Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Bintjas is active.

Publication


Featured researches published by C. Bintjas.


IEEE Photonics Technology Letters | 2000

20 Gb/s all-optical XOR with UNI gate

C. Bintjas; M. Kalyvas; G. Theophilopoulos; T. Stathopoulos; Hercules Avramopoulos; L. Occhi; L. Schares; G. Guekos; S. Hansmann; R. Dall'Ara

All-optical Boolean XOR is demonstrated on a 20 Gb/s pseudodata pattern using a semiconductor optical amplifier-based ultrafast nonlinear interferometer (UNI) switch. Bit pattern switching with low-pattern dependence and low switching energies is achieved.


Journal of Lightwave Technology | 2005

All-optical signal Processing and applications within the esprit project DO/spl I.bar/ALL

T. Houbavlis; K. E. Zoiros; M. Kalyvas; G. Theophilopoulos; C. Bintjas; Konstantinos Yiannopoulos; Nikos Pleros; Kyriakos Vlachos; Hercules Avramopoulos; L. Schares; L. Occhi; G. Guekos; J. R. Taylor; S. Hansmann; W. Miller

This paper reviews the work performed under the European ESPRIT project DO/spl I.bar/ALL (Digital OpticAL Logic modules) spanning from advanced devices (semiconductor optical amplifiers) to all-optical modules (laser sources and gates) and from optical signal processing subsystems (packet clock recovery, optical write/store memory, and linear feedback shift register) to their integration in the application level for the demonstration of nontrivial logic functionality (all-optical bit-error-rate tester and a 2/spl times/2 exchange-bypass switch). The successful accomplishment of the projects goals has opened the road for the implementation of more complex ultra-high-speed all-optical signal processing circuits that are key elements for the realization of all-optical packet switching networks.


IEEE Photonics Technology Letters | 2002

Clock recovery circuit for optical packets

C. Bintjas; Konstantinos Yiannopoulos; Nikos Pleros; G. Theophilopoulos; M. Kalyvas; Hercules Avramopoulos; G. Guekos

We demonstrate an all-optical clock recovery circuit for operation with short data packets of 10-Gb/s rate. The circuit uses a Fabry-Perot etalon and a nonlinear UNI gate and is capable of acquiring the clock signal within a few bits.


IEEE Photonics Technology Letters | 2002

All-optical packet address and payload separation

C. Bintjas; Nikos Pleros; Konstantinos Yiannopoulos; G. Theophilopoulos; M. Kalyvas; Hercules Avramopoulos; G. Guekos

An all-optical address and data separation scheme is presented for short 10-Gb/s packets. The technique uses a novel packet clock recovery circuit that consists of a Fabry-Perot filter and a ultrafast nonlinear interferometer (UNI) gate to generate a local packet clock. A second cascaded UNI gate is used to separate the header and the payload, performing a simple AND operation between the packet and its self-derived clock. The proposed technique requires a small number of bits as guard band and this number is independent of the line rate.


IEEE Photonics Technology Letters | 2002

Multiwavelength and power equalized SOA laser sources

Nikos Pleros; C. Bintjas; M. Kalyvas; G. Theophilopoulos; Konstantinos Yiannopoulos; S. Sygletos; Hercules Avramopoulos

Multiwavelength and power-equalized operation is demonstrated in a semiconductor optical amplifier ring laser that uses a fiber Fabry-Perot filter. By using single-pass optical feedback, the power-equalized oscillating spectrum is broadened so that simultaneous oscillation of 52 lines spaced at 50 GHz is achieved. The lines had 500 MHz width were power-equalized to within 0.3 dB and the extinction was better than 32 dB.


Journal of Lightwave Technology | 2003

Ultrafast time-domain technology and its application in all-optical signal processing

Kyriakos Vlachos; Nikos Pleros; C. Bintjas; G. Theophilopoulos; Hercules Avramopoulos

In this paper, we review recent advances in ultrafast optical time-domain technology with emphasis on the use in optical packet switching. In this respect, several key building blocks, including high-rate laser sources applicable to any time-division-multiplexing (TDM) application, optical logic circuits for bitwise processing, and clock-recovery circuits for timing synchronization with both synchronous and asynchronous data traffic, are described in detail. The circuits take advantage of the ultrafast nonlinear transfer function of semiconductor-based devices to operate successfully at rates beyond 10 Gb/s. We also demonstrate two more complex circuits-a header extraction unit and an exchange-bypass switch-operating at 10 Gb/s. These two units are key blocks for any general-purpose packet routing/switching application. Finally, we discuss the system perspective of all these modules and propose their possible incorporation in a packet switch architecture to provide low-level but high-speed functionalities. The goal is to perform as many operations as possible in the optical domain to increase node throughput and to alleviate the network from unwanted and expensive optical-electrical-optical conversions.


IEEE Journal of Selected Topics in Quantum Electronics | 2004

Ultrafast semiconductor-based fiber laser sources

Kyriakos Vlachos; C. Bintjas; Nikos Pleros; Hercules Avramopoulos

In this paper, a novel ring laser platform is presented that uses a single active element, a semiconductor optical amplifier (SOA), to provide both gain and gain modulation in the optical cavity. Gain modulation is achieved by an externally introduced optical pulsed signal. This signal periodically saturates the amplifier gain and forces the ring laser to mode lock. Using this laser platform, we demonstrate picosecond pulsetrain generation at repetition rates up to 40 GHz, either in single or multiwavelength operation mode. In particular, using rational harmonic mode locking, 2.5-ps pulses were obtained up to a 40-GHz repetition rate, while output pulses and output power were constant over a 20-nm tuning range. In addition, a multiwavelength optical signal was obtained using the same laser platform with the addition of a Fabry-Pe/spl acute/rot filter for comb generation. Multiwavelength oscillation is possible due to the broad gain spectrum of the SOA used and its inhomogeneous line broadening. To this end, 48 oscillating wavelengths were obtained at the laser output, with 50-GHz line spacing. Combining both modes of operation, it was possible to mode lock the oscillating multiwavelength signal and to obtain at the output ten wavelength channels, simultaneously mode locked at a 30-GHz repetition rate. The mode-locked channels are temporarily synchronized and exhibit almost identical spectral and time characteristics.


IEEE Photonics Technology Letters | 2002

Optically addressable 2 x 2 exchange/bypass packet switch

G. Theophilopoulos; M. Kalyvas; C. Bintjas; Nikos Pleros; Konstantinos Yiannopoulos; Alexandros Stavdas; Hercules Avramopoulos; G. Guekos

In this letter, we demonstrate an optically addressable 2 /spl times/ 2 exchange-bypass switch operating with 10-Gb/s data packets. Switching is achieved at the bit level using an ultrafast nonlinear interferometer gate with two input data signals and a single control signal. The bit error rate of the switch in a static configuration was estimated to be 10/sup -11/ using synchronous digital hierarchy 64 data frames.


Journal of Lightwave Technology | 2004

Recipe for intensity modulation reduction in SOA-based interferometric switches

Nikos Pleros; C. Bintjas; George T. Kanellos; Kyriakos Vlachos; Hercules Avramopoulos; G. Guekos

This paper presents a theoretical and experimental analysis of saturated semiconductor optical amplifier (SOA)-based interferometric switching arrangements. For the first time, it is shown that such devices can provide enhanced intensity modulation reduction to return-to-zero (RZ) formatted input pulse trains, when the SOA is saturated with a strong continuous-wave (CW) input signal. A novel theoretical platform has been developed in the frequency domain, which reveals that the intensity modulation of the input pulse train can be suppressed by more than 10 dB at the output. This stems from the presence of the strong CW signal that transforms the sinusoidal transfer function of the interferometric switch into an almost flat, strongly nonlinear curve. This behavior has also been verified experimentally for both periodically and randomly degraded, in terms of intensity modulation, signals at 10 Gb/s using the ultrafast nonlinear interferometer as the switching device. Performance analysis both in the time and frequency domains is demonstrated, verifying the concept and its theoretical analysis.


Journal of Lightwave Technology | 2003

Ultrafast nonlinear interferometer (UNI)-based digital optical circuits and their use in packet switching

C. Bintjas; Kyriakos Vlachos; Nikos Pleros; Hercules Avramopoulos

Digital optical logic circuits capable of performing bit-wise signal processing are critical building blocks for the realization of future high-speed packet-switched networks. In this paper, we present recent advances in all-optical processing circuits and examine the potential of their integration into a system environment. On this concept, we demonstrate serial all-optical Boolean AND/XOR logic at 20 Gb/s and a novel all-optical packet clock recovery circuit, with low capturing time, suitable for burst-mode traffic. The circuits use the semiconductor-based ultrafast nonlinear interferometer (UNI) as the nonlinear switching element. We also present the integration of these circuits in a more complex unit that performs header and payload separation from short synchronous data packets at 10 Gb/s. Finally, we discuss a method to realize a novel packet scheduling switch architecture, which guarantees lossless communication for specific traffic burstiness constraints, using these logic units.

Collaboration


Dive into the C. Bintjas's collaboration.

Top Co-Authors

Avatar

Hercules Avramopoulos

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Nikos Pleros

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Kalyvas

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

G. Theophilopoulos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George T. Kanellos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Konstantinos Vyrsokinos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Dimitris Tsiokos

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge