Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. C. Petty is active.

Publication


Featured researches published by C. C. Petty.


Physics of Plasmas | 2001

Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak

K.H. Burrell; M. E. Austin; D.P. Brennan; J. C. DeBoo; E. J. Doyle; C. Fenzi; C. Fuchs; P. Gohil; C. M. Greenfield; Richard J. Groebner; L. L. Lao; T.C. Luce; M. A. Makowski; G. R. McKee; R. A. Moyer; C. C. Petty; M. Porkolab; C. L. Rettig; T. L. Rhodes; J. C. Rost; B. W. Stallard; E. J. Strait; E. J. Synakowski; M. R. Wade; J. G. Watkins; W.P. West

High-confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation that is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 en...


Nuclear Fusion | 2011

L-mode validation studies of gyrokinetic turbulence simulations via multiscale and multifield turbulence measurements on the DIII-D tokamak

T.L. Rhodes; C. Holland; S.P. Smith; A.E. White; K.H. Burrell; J. Candy; J.C. DeBoo; E. J. Doyle; J. C. Hillesheim; J. E. Kinsey; G.R. McKee; D. R. Mikkelsen; W. A. Peebles; C. C. Petty; R. Prater; Scott E. Parker; Yang Chen; L. Schmitz; G. M. Staebler; R. E. Waltz; G. Wang; Z. Yan; L. Zeng

A series of carefully designed experiments on DIII-D have taken advantage of a broad set of turbulence and profile diagnostics to rigorously test gyrokinetic turbulence simulations. In this paper the goals, tools and experiments performed in these validation studies are reviewed and specific examples presented. It is found that predictions of transport and fluctuation levels in the mid-core region (0.4 < ρ < 0.75) are in better agreement with experiment than those in the outer region (ρ ≥ 0.75) where edge coupling effects may become increasingly important and multiscale simulations may also be necessary. Validation studies such as these are crucial in developing confidence in a first-principles based predictive capability for ITER.


Nuclear Fusion | 2001

Non-dimensional scaling of turbulence characteristics and turbulent diffusivity

G.R. McKee; C. C. Petty; R. E. Waltz; C. Fenzi; R. J. Fonck; J.E. Kinsey; T.C. Luce; K.H. Burrell; D.R. Baker; E. J. Doyle; X. Garbet; R.A. Moyer; C. L. Rettig; T.L. Rhodes; David W. Ross; G. M. Staebler; Richard D. Sydora; M.R. Wade

Plasma turbulence characteristics, including radial correlation lengths, decorrelation times, amplitude profile and flow velocity, have been measured during a ρ* scan on DIII-D while all other transport relevant dimensionless quantities (e.g., β, ν*, κ, q, Te/Ti) are held nearly constant. The turbulence is measured by examining the correlation properties of the local long wavelength (k⊥ρi ≤ 1) density fluctuations, measured with beam emission spectroscopy. The radial correlation length of the turbulence Lc,r is shown to scale with the local ion gyroradius, Lc,r ≈ 5ρi, while the decorrelation times scale with the local acoustic velocity as τc~a/cs. The turbulent diffusivity parameter, D~(Lc,r2/τc), scales in a roughly gyro-Bohm-like fashion, as predicted by the gyrokinetic equations governing turbulent transport. The experimental one fluid power balance heat diffusivity scaling and that from GLF23 modelling compare reasonably well.


Physics of Plasmas | 1999

Electron heat transport in improved confinement discharges in DIII-D

Barry W. Stallard; C. M. Greenfield; G. M. Staebler; C. L. Rettig; M. S. Chu; M. E. Austin; D.R. Baker; L. R. Baylor; K.H. Burrell; J.C. DeBoo; J.S. deGrassie; E. J. Doyle; J. Lohr; G.R. McKee; R. L. Miller; W. A. Peebles; C. C. Petty; R. I. Pinsker; B. W. Rice; T. L. Rhodes; R. E. Waltz; L. Zeng

In DIII-D tokamak plasmas with an internal transport barrier (ITB), the comparison of gyrokinetic linear stability (GKS) predictions with experiments in both low and strong negative magnetic shear plasmas provide improved understanding for ion and electron thermal transport within much of the plasma. As previously reported, the region for improved ion transport seems well characterized by the condition OE~B>Y-, where SERB is the ExB flow shear, calculated from measured quantities, and y,, is the maximum linear growth rate for ion temperature gradient (ITG) modes in the absence of flow shear. Within a limited region just inside the ITB, the electron temperature gradient (ETG) modes appear to control the electron temperature gradient and, consequently, the electron thermal transport. The increase in electron temperature gradient with more strongly negative magnetic shear is consistent with the increase in the ETG mode marginal gradient. Closer to the magnetic axis the Te profile flattens and the ETG modes are predicted to be stable. With additional core electron heating, FIR scattering measurements near the axis show the presence of high k fluctuations (12 cm-l), rotating in the electron diamagnetic drift direction. This turbulence could impact electron transport and possibly also ion transport. Thermal diffusivities for electrons, and to a lesser degree ions, increase. The ETG mode can exist at this wavenumber, but it is computed to be robustly stable near the axis.


Physics of Plasmas | 1995

Nondimensional transport scaling in DIII‐D: Bohm versus gyro‐Bohm resolved

C. C. Petty; T.C. Luce; K.H. Burrell; S. C. Chiu; J.S. deGrassie; C. B. Forest; P. Gohil; C. M. Greenfield; R. J. Groebner; Richard William Harvey; R. I. Pinsker; R. Prater; R. E. Waltz; R. A. James; D. Wròblewski

The scaling of cross‐field heat transport with relative gyroradius ρ* was measured in low (L) and high (H) mode tokamak plasmas using the technique of dimensionally similar discharges. The relative gyroradius scalings of the electron and ion thermal diffusivities were determined separately using a two‐fluid transport analysis. For L‐mode plasmas, the electron diffusivity scaled as χe∝χBρ1.1±0.3* (gyro‐Bohm‐like) while the ion diffusivity scaled as χi∝χBρ−0.5±0.3* (worse than Bohm‐like). The results were independent of the method of auxiliary heating (radio frequency or neutral beam). Since the electron and ion fluids had different gyroradius scalings, the effective diffusivity and global confinement time scalings were found to vary from gyro‐Bohm‐like to Bohm‐like depending upon whether the electron or ion channel dominated the heat flux. This last property can explain the previously disparate results with dimensionally similar discharges on different fusion experiments that have been published. Experimen...


Physics of Plasmas | 2006

Progress toward fully noninductive, high beta conditions in DIII-D

M. Murakami; M. R. Wade; C. M. Greenfield; T.C. Luce; J.R. Ferron; H.E. St. John; J.C. DeBoo; W.W. Heidbrink; Y. Luo; M. A. Makowski; T.H. Osborne; C. C. Petty; P.A. Politzer; S.L. Allen; M. E. Austin; K.H. Burrell; T. A. Casper; E. J. Doyle; A. M. Garofalo; P. Gohil; I.A. Gorelov; R. J. Groebner; A.W. Hyatt; R. J. Jayakumar; K. Kajiwara; C. Kessel; J.E. Kinsey; R.J. La Haye; L. L. Lao; A.W. Leonard

The DIII-D Advanced Tokamak (AT) program in the DIII-D tokamak [J. L. Luxon, Plasma Physics and Controlled Fusion Research, 1986, Vol. I (International Atomic Energy Agency, Vienna, 1987), p. 159] is aimed at developing a scientific basis for steady-state, high-performance operation in future devices. This requires simultaneously achieving 100% noninductive operation with high self-driven bootstrap current fraction and toroidal beta. Recent progress in this area includes demonstration of 100% noninductive conditions with toroidal beta, βT=3.6%, normalized beta, βN=3.5, and confinement factor, H89=2.4 with the plasma current driven completely by bootstrap, neutral beam current drive, and electron cyclotron current drive (ECCD). The equilibrium reconstructions indicate that the noninductive current profile is well aligned, with little inductively driven current remaining anywhere in the plasma. The current balance calculation improved with beam ion redistribution that was supported by recent fast ion diagno...


Physics of Plasmas | 2010

Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations

Anne E. White; W. A. Peebles; T.L. Rhodes; C. Holland; G. Wang; L. Schmitz; Troy Carter; J. C. Hillesheim; E. J. Doyle; L. Zeng; G.R. McKee; G. M. Staebler; R. E. Waltz; J.C. DeBoo; C. C. Petty; K.H. Burrell

This paper presents new measurements of the cross-phase angle, αneTe, between long-wavelength (kθρs<0.5) density, ne, and electron temperature, Te, fluctuations in the core of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] tokamak plasmas. The coherency and cross-phase angle between ne and Te are measured using coupled reflectometer and correlation electron cyclotron emission diagnostics that view the same plasma volume. In addition to the experimental results, two sets of local, nonlinear gyrokinetic turbulence simulations that are performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are described. One set, called the pre-experiment simulations, was performed prior to the experiment in order to predict a change in αneTe given experimentally realizable increases in the electron temperature, Te. In the experiment the cross-phase angle was measured at three radial locations (ρ=0.55, 0.65, and 0.75) in both a “Base” case and a “High Te” case. The measured cross-pha...


Physics of Plasmas | 2006

Active control for stabilization of neoclassical tearing modes

D.A. Humphreys; J.R. Ferron; R.J. La Haye; T.C. Luce; C. C. Petty; R. Prater; A.S. Welander

This work describes active control algorithms used by DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] to stabilize and maintain suppression of 3/2 or 2/1 neoclassical tearing modes (NTMs) by application of electron cyclotron current drive (ECCD) at the rational q surface. The DIII-D NTM control system can determine the correct q-surface/ECCD alignment and stabilize existing modes within 100–500ms of activation, or prevent mode growth with preemptive application of ECCD, in both cases enabling stable operation at normalized beta values above 3.5. Because NTMs can limit performance or cause plasma-terminating disruptions in tokamaks, their stabilization is essential to the high performance operation of ITER [R. Aymar et al., ITER Joint Central Team, ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The DIII-D NTM control system has demonstrated many elements of an eventual ITER solution, including general algorithms for robust detection of q-surface/ECCD alignment and for real-time maintenance of alignment ...


Physics of Plasmas | 1997

Transport and performance in DIII-D discharges with weak or negative central magnetic shear

C. M. Greenfield; D.P. Schissel; B. W. Stallard; E. A. Lazarus; Gerald A. Navratil; K.H. Burrell; T. A. Casper; J.C. DeBoo; E. J. Doyle; R. J. Fonck; C. B. Forest; P. Gohil; R. J. Groebner; M. J. Jakubowski; L. L. Lao; M. Murakami; C. C. Petty; C. L. Rettig; T. L. Rhodes; B. W. Rice; H.E. St. John; G. M. Staebler; E. J. Strait; T.S. Taylor; Alan D. Turnbull; K. L. Tritz; R. E. Waltz; Diii-D Team

Discharges exhibiting the highest plasma energy and fusion reactivity yet realized in the DIII-D tokamak have been produced by combining the benefits of a hollow or weakly sheared central current profile with a high confinement (H-mode) edge. In these discharges, low power neutral beam injection heats the electrons during the initial current ramp, and {open_quotes}freezes in{close_quotes} a hollow or flat central current profile. When the neutral beam power is increased, formation of a region of reduced transport and highly peaked profiles in the core often results. Shortly before these plasmas would otherwise disrupt, a transition is triggered from the low (L-mode) to high (H-mode) confinement regimes, thereby broadening the pressure profile and avoiding the disruption. These plasmas continue to evolve until the high performance phase is terminated nondisruptively at much higher {beta}{sub T} (ratio of plasma pressure to toroidal magnetic field pressure) than would be attainable with peaked profiles and an L-mode edge. Transport analysis indicates that in this phase, the ion diffusivity is equivalent to that predicted by Chang-Hinton neoclassical theory over the entire plasma volume. This result is consistent with suppression of turbulence by locally enhanced E x B flow shear, and is supported by observations of reduced fluctuations in the plasma. Calculations of performance in these discharges extrapolated to a deuterium-tritium fuel mixture indicates that such plasmas could produce a DT fusion gain Q{sub DT} = 0.32.


Nuclear Fusion | 2009

Dependence of the L- to H-mode Power Threshold on Toroidal Rotation and the Link to Edge Turbulence Dynamics

G.R. McKee; P. Gohil; David J. Schlossberg; J.A. Boedo; K.H. Burrell; J.S. deGrassie; R. J. Groebner; R.A. Moyer; C. C. Petty; T.L. Rhodes; L. Schmitz; M. W. Shafer; W.M. Solomon; M. V. Umansky; G. Wang; Anne E. White; X.Q. Xu

The injected power required to induce a transition from L-mode to H-mode plasmas is found to depend strongly on the injected neutral beam torque and consequent plasma toroidal rotation. Edge turbulence and flows, measured near the outboard midplane of the plasma (0.85 < r/a < 1.0) on DIII-D with the high-sensitivity 2D beam emission spectroscopy (BES) system, likewise vary with rotation and suggest a causative connection. The L–H power threshold in plasmas with the ion ∇B drift directed away from the X-point decreases from 4–6 MW with co-current beam injection, to 2–3 MW near zero net injected torque and to <2 MW with counter-injection in the discharges examined. Plasmas with the ion ∇B drift directed towards the X-point exhibit a qualitatively similar though less pronounced power threshold dependence on rotation. 2D edge turbulence measurements with BES show an increasing poloidal flow shear as the L–H transition is approached in all conditions. As toroidal rotation is varied from co-current to balanced in L-mode plasmas, the edge turbulence changes from a uni-modal character to a bi-modal structure, with the appearance of a low-frequency (f = 10–50 kHz) mode propagating in the electron diamagnetic direction, similar to what is observed as the ion ∇B drift is directed towards the X-point in co-rotating plasmas. At low rotation, the poloidal turbulence flow near the edge reverses prior to the L–H transition, generating a significant poloidal flow shear that exceeds the measured turbulence decorrelation rate. This increased poloidal turbulence velocity shear appears to facilitate the L–H transition. No such reversal is observed in high rotation plasmas. The high-frequency poloidal turbulence velocity spectrum exhibits a transition from a geodesic acoustic mode zonal flow to a higher-power, lower frequency zero-mean-frequency zonal flow as rotation varies from co-current to balanced during a torque scan at constant injected neutral beam power, perhaps also facilitating the L–H transition. This reduced power threshold at lower toroidal rotation may benefit inherently low-rotation plasmas such as ITER.

Collaboration


Dive into the C. C. Petty's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. E. Austin

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

E. J. Doyle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.R. McKee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

T.L. Rhodes

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge