Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where K.H. Burrell is active.

Publication


Featured researches published by K.H. Burrell.


Physics of Plasmas | 1997

Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices

K.H. Burrell

One of the scientific success stories of fusion research over the past decade is the development of the ExB shear stabilization model to explain the formation of transport barriers in magnetic confinement devices. This model was originally developed to explain the transport barrier formed at the plasma edge in tokamaks after the L (low) to H (high) transition. This concept has the universality needed to explain the edge transport barriers seen in limiter and divertor tokamaks, stellarators, and mirror machines. More recently, this model has been applied to explain the further confinement improvement from H (high)-mode to VH (very high)-mode seen in some tokamaks, where the edge transport barrier becomes wider. Most recently, this paradigm has been applied to the core transport barriers formed in plasmas with negative or low magnetic shear in the plasma core. These examples of confinement improvement are of considerable physical interest; it is not often that a system self-organizes to a higher energy state with reduced turbulence and transport when an additional source of free energy is applied to it. The transport decrease that is associated with ExB velocity shear effects also has significant practical consequences for fusion research. The fundamental physics involved in transport reduction is the effect of ExB shear on the growth, radial extent and phase correlation of turbulent eddies in the plasma. The same fundamental transport reduction process can be operational in various portions of the plasma because there are a number ways to change the radial electric field Er. An important theme in this area is the synergistic effect of ExB velocity shear and magnetic shear. Although the ExB velocity shear appears to have an effect on broader classes of microturbulence, magnetic shear can mitigate some potentially harmful effects of ExB velocity shear and facilitate turbulence stabilization.


Physics of Plasmas | 1995

Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma

T. S. Hahm; K.H. Burrell

The suppression of turbulence by the E×B flow shear and parallel flow shear is studied in an arbitrary shape finite aspect ratio tokamak plasma using the two point nonlinear analysis previously utilized in a high aspect ratio tokamak plasma [Phys. Plasmas 1, 2940 (1994)]. The result shows that only the E×B flow shear is responsible for the suppression of flute‐like fluctuations. This suppression occurs regardless of the plasma rotation direction and is, therefore, relevant for the very high (VH) mode plasma core as well as for the high (H) mode plasma edge. Experimentally observed in–out asymmetry of fluctuation reduction behavior can be addressed in the context of flux expansion and magnetic field pitch variation on a given flux surface. The adverse effect of neutral particles on confinement improvement is also discussed in the context of the charge exchange induced parallel momentum damping.


Nuclear Fusion | 2007

Inter-machine comparison of intrinsic toroidal rotation in tokamaks

J. E. Rice; A. Ince-Cushman; J.S. deGrassie; L.-G. Eriksson; Y. Sakamoto; A. Scarabosio; A. Bortolon; K.H. Burrell; B.P. Duval; C. Fenzi-Bonizec; M. Greenwald; Richard J. Groebner; G. T. Hoang; Y. Koide; E. Marmar; A. Pochelon; Y. Podpaly

Parametric scalings of the intrinsic (spontaneous, with no external momentum input) toroidal rotation observed on a large number of tokamaks have been combined with an eye towards revealing the underlying mechanism(s) and extrapolation to future devices. The intrinsic rotation velocity has been found to increase with plasma stored energy or pressure in JET, Alcator C-Mod, Tore Supra, DIII-D, JT-60U and TCV, and to decrease with increasing plasma current in some of these cases. Use of dimensionless parameters has led to a roughly unified scaling with M-A alpha beta(N), although a variety of Mach numbers works fairly well; scalings of the intrinsic rotation velocity with normalized gyro-radius or collisionality show no correlation. Whether this suggests the predominant role of MHD phenomena such as ballooning transport over turbulent processes in driving the rotation remains an open question. For an ITER discharge with beta(N) = 2.6, an intrinsic rotation Alfven Mach number of M-A similar or equal to 0.02 may be expected from the above deduced scaling, possibly high enough to stabilize resistive wall modes without external momentum input.


Physics of Plasmas | 1994

Role of the radial electric field in the transition from L (low) mode to H (high) mode to VH (very high) mode in the DIII-D tokamak

K.H. Burrell; E. J. Doyle; P. Gohil; R. J. Groebner; J. Kim; R.J. La Haye; L. L. Lao; R. A. Moyer; T.H. Osborne; W. A. Peebles; C. L. Rettig; T. H. Rhodes; D. M. Thomas

The hypothesis of stabilization of turbulence by shear in the E×B drift speed successfully predicts the observed turbulence reduction and confinement improvement seen at the L (low)–H (high) transition; in addition, the observed levels of E×B shear significantly exceed the value theoretically required to stabilize turbulence. Furthermore, this same hypothesis is the best explanation to date for the further confinement improvement seen in the plasma core when the plasma goes from the H mode to the VH (very high) mode. Consequently, the most fundamental question for H‐mode studies now is: How is the electric field Er formed? The radial force balance equation relates Er to the main ion pressure gradient ∇Pi, poloidal rotation vθi, and toroidal rotation vφi. In the plasma edge, observations show ∇Pi and vθi are the important terms at the L–H transition, with ∇Pi being the dominant, negative term throughout most of the H mode. In the plasma core, Er is primarily related to vφi. There is a clear temporal and sp...


Review of Scientific Instruments | 1999

The beam emission spectroscopy diagnostic on the DIII-D tokamak

G.R. McKee; R. Ashley; R. Durst; R. J. Fonck; M. Jakubowski; K. Tritz; K.H. Burrell; C. M. Greenfield; J. Robinson

A beam emission spectroscopy system has been installed on DIII-D to provide localized density fluctuation measurements for long-wavelength turbulent modes with k⩽3 cm−1 which are typically associated with anomalous radial transport. High signal-to-noise fluctuations measurements are accomplished through use of high speed electronics to maintain a frequency response of over 500 KHz and cryogenically cooled amplifiers and detectors to reduce electronic noise. The optics and neutral beam-sightline geometry have been optimized to allow for spatial resolution of Δr⩽1 cm. In addition, a half-scale two-dimensional (2D) fiber array to measure the 2D turbulent density field, necessary to measure the full S(kr,kθ) wavenumber spectra, has been implemented and initial results obtained.


Plasma Physics and Controlled Fusion | 1992

Physics of the L-mode to H-mode transition in tokamaks

K.H. Burrell; T. N. Carlstrom; E. J. Doyle; D Finkenthal; P. Gohil; R. J. Groebner; D L Hillis; J. Kim; H. Matsumoto; R. A. Moyer; T.H. Osborne; C. L. Rettig; W A Peebles; T.L. Rhodes; H StJohn; R. D. Stambaugh; M.R. Wade; J.G. Watkins

Combined theoretical and experimental work has resulted in the creation of a paradigm which has allowed semi-quantitative understanding of the edge confinement improvement that occurs in the H-mode. Shear in the E*B flow of the fluctuations in the plasma edge can lead to decorrelation of the fluctuations, decreased radial correlation lengths and reduced turbulent transport. Changes in the radial electric field, the density fluctuations and the edge transport consistent with shear stabilization of turbulence have been seen in several tokamaks. The purpose of this paper is to discuss the most recent data in the light of the basic paradigm of electric field shear stabilization and to critically compare the experimental results with various theories.


Physics of Plasmas | 1996

Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII‐D high performance discharges

L. L. Lao; K.H. Burrell; T.S. Casper

The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-{eta}{sub i}mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the {eta}{sub i} mode suggests that the large core {bold E x B} flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low {Beta}{sub N} {lt} 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity.


Nuclear Fusion | 2007

STABILITY AND DYNAMICS OF THE EDGE PEDESTAL IN THE LOW COLLISIONALITY REGIME: PHYSICS MECHANISMS FOR STEADY-STATE ELM-FREE OPERATION

Philip B. Snyder; K.H. Burrell; H. R. Wilson; M. S. Chu; M.E. Fenstermacher; A.W. Leonard; R.A. Moyer; T.H. Osborne; M. Umansky; W.P. West; X.Q. Xu

Understanding the physics of the edge pedestal and edge localized modes (ELMs) is of great importance for ITER and the optimization of the tokamak concept. The peeling–ballooning model has quantitatively explained many observations, including ELM onset and pedestal constraints, in the standard H-mode regime. The ELITE code has been developed to efficiently evaluate peeling–ballooning stability for comparison with observation and predictions for future devices. We briefly review recent progress in the peeling–ballooning model, including experimental validation of ELM onset and pedestal height predictions, and nonlinear 3D simulations of ELM dynamics, which together lead to an emerging understanding of the physics of the onset and dynamics of ELMs in the standard intermediate to high collisionality regime. We also discuss new studies of the apparent power dependence of the pedestal, and studies of the impact of sheared toroidal flow. Recently, highly promising low collisionality regimes without ELMs have been discovered, including the quiescent H-mode (QH) and resonant magnetic perturbation (RMP) regimes. We present recent observations from the DIII-D tokamak of the density, shape and rotation dependence of QH discharges, and studies of the peeling–ballooning stability in this regime. We propose a model of the QH-mode in which the observed edge harmonic oscillation (EHO) is a saturated kink/peeling mode which is destabilized by current and rotation, and drives significant transport, allowing a near steady-state edge plasma. The model quantitatively predicts the observed density dependence and qualitatively predicts observed mode structure, rotation dependence and outer gap dependence. Low density RMP discharges are found to operate in a similar regime, but with the EHO replaced by an applied magnetic perturbation.


Physics of fluids. B, Plasma physics | 1990

Physics of the L to H transition in the DIII‐D tokamak

K.H. Burrell; T. N. Carlstrom; E. J. Doyle; P. Gohil; R. J. Groebner; T. Lehecka; N. C. Luhmann; H. Matsumoto; T.H. Osborne; W. A. Peebles; Rolf Philipona

The L to H transition in the DIII‐D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. I, p. 159] is associated with a decrease in the edge density and magnetic fluctuations. In addition, in single‐null divertor plasmas, a reduction in the heat flux asymmetry between the inner and outer divertor hit spots occurs. These observations indicate that the L to H transition is associated with the reduction in anomalous, fluctuation‐connected transport across the outer midplane of the plasma. Magnetic fluctuations are measured with a poloidally distributed set of Mirnov loops while density fluctuations are detected with multiple fixed‐frequency microwave reflectometers. Spectroscopic observations of edge poloidal and toroidal rotation have allowed the inference that the radial electric field just inside the separatrix is negative in the L mode and becomes more negative at the L to H transition. These changes in fluctuations and in the edge electric field occur in plasma...


Physics of Plasmas | 2001

Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak

K.H. Burrell; M. E. Austin; D.P. Brennan; J. C. DeBoo; E. J. Doyle; C. Fenzi; C. Fuchs; P. Gohil; C. M. Greenfield; Richard J. Groebner; L. L. Lao; T.C. Luce; M. A. Makowski; G. R. McKee; R. A. Moyer; C. C. Petty; M. Porkolab; C. L. Rettig; T. L. Rhodes; J. C. Rost; B. W. Stallard; E. J. Strait; E. J. Synakowski; M. R. Wade; J. G. Watkins; W.P. West

High-confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation that is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 en...

Collaboration


Dive into the K.H. Burrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. Doyle

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.R. McKee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

T.L. Rhodes

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge