Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Cerjan is active.

Publication


Featured researches published by C. Cerjan.


Nature | 2014

Fuel gain exceeding unity in an inertially confined fusion implosion

O. A. Hurricane; D. A. Callahan; D. T. Casey; Peter M. Celliers; C. Cerjan; E. L. Dewald; T. R. Dittrich; T. Döppner; D. E. Hinkel; L. Berzak Hopkins; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; A. Pak; H.-S. Park; P. K. Patel; B. A. Remington; J. D. Salmonson; P. T. Springer; R. Tommasini

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium–tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a ‘high-foot’ implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium–tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the ‘bootstrapping’ required to accelerate the deuterium–tritium fusion burn to eventually ‘run away’ and ignite.


Journal of Applied Physics | 1996

Conversion efficiencies from laser‐produced plasmas in the extreme ultraviolet regime

R. C. Spitzer; Thaddeus J. Orzechowski; D. W. Phillion; R. L. Kauffman; C. Cerjan

The conversion efficiency of spectral emission from laser‐irradiated solid targets was investigated for short wavelength source development. The plasma brightness was quantified using absolutely calibrated detectors for 20 materials and spectra were obtained between 50 and 200 A. Laser parameters such as wavelength, pulse length, intensity, and spot size were systematically varied to establish a comprehensive database for source optimization. Qualitative differences in the underlying dominant emission features as a function of atomic number and laser wavelength were observed that accounted for the relatively high spectral conversion efficiencies produced. In the specific case of Sn, a conversion efficiency greater than 0.8%/eV has been observed in the technologically important region of λ=134.0 A using a laser intensity of 1–2×1011 W/cm2.


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2012

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments

O. S. Jones; C. Cerjan; M. M. Marinak; J. L. Milovich; H. F. Robey; P. T. Springer; L. R. Benedetti; D. L. Bleuel; E. Bond; D. K. Bradley; D. A. Callahan; J. A. Caggiano; Peter M. Celliers; D. S. Clark; S. M. Dixit; T. Döppner; Rebecca Dylla-Spears; E. G. Dzentitis; D. R. Farley; S. Glenn; S. H. Glenzer; S. W. Haan; B. J. Haid; C. A. Haynam; Damien G. Hicks; B. J. Kozioziemski; K. N. LaFortune; O. L. Landen; E. R. Mapoles; A. J. Mackinnon

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measu...


Journal of Applied Physics | 2000

Nucleation and annihilation of magnetic vortices in submicron-scale Co dots

Andres Fernandez; C. Cerjan

We describe experiments on arrays of polycrystalline Co structures fabricated by interference lithography. The dots are thin (15–40 nm), submicron in size, and are patterned with a uniaxial, in-plane, shape anisotropy axis. We use magnetic force microscopy (MFM) in the presence of an applied field to directly observe magnetic reversal in the dots. These experiments reveal that reversal occurs predominantly through the nucleation and annihilation of a single magnetic vortex in each dot. Hysteresis loop measurements indicate that the vortices are stable over a wide range of applied fields and that the limits of this range depend on the size and thickness of the dots. Using the MFM data, we determine the statistical distribution of the single-vortex nucleation field for several different arrays. We attribute the observed variance to the random orientation of the polycrystalline grains. Finally, we show that the average vortex nucleation and annihilations fields are linearly correlated to the demagnetization ...


Review of Scientific Instruments | 2012

Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited).

M. Gatu Johnson; J. A. Frenje; D. T. Casey; C. K. Li; F. H. Séguin; R. D. Petrasso; R. C. Ashabranner; R. Bionta; D. L. Bleuel; E. Bond; J. A. Caggiano; A. Carpenter; C. Cerjan; T. J. Clancy; T. Doeppner; M. J. Eckart; M. J. Edwards; S. Friedrich; S. H. Glenzer; S. W. Haan; Edward P. Hartouni; R. Hatarik; S. P. Hatchett; O. S. Jones; G. A. Kyrala; S. Le Pape; R. A. Lerche; O. L. Landen; T. Ma; A. J. Mackinnon

DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.


Physics of Plasmas | 2011

Diagnosing and controlling mix in National Ignition Facility implosion experiments a)

B. A. Hammel; Howard A. Scott; S. P. Regan; C. Cerjan; D. S. Clark; M. J. Edwards; R. Epstein; S. H. Glenzer; S. W. Haan; N. Izumi; J. A. Koch; G. A. Kyrala; O. L. Landen; S. H. Langer; Kyle Peterson; V. A. Smalyuk; L. J. Suter; D. C. Wilson

High mode number instability growth of “isolated defects” on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce “isolated defects.” An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.


Physics of Plasmas | 2012

Hot-spot mix in ignition-scale implosions on the NIF

S. P. Regan; R. Epstein; B. A. Hammel; L. J. Suter; J. E. Ralph; Howard A. Scott; M. A. Barrios; D. K. Bradley; D. A. Callahan; C. Cerjan; G. W. Collins; S. Dixit; T. Doeppner; M. J. Edwards; D. R. Farley; S. Glenn; S. H. Glenzer; I. E. Golovkin; S. W. Haan; Alex V. Hamza; Damien G. Hicks; N. Izumi; J. D. Kilkenny; J. L. Kline; G. A. Kyrala; O. L. Landen; T. Ma; J. J. MacFarlane; R. C. Mancini; R. L. McCrory

Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50<l<200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasma...


Physics of Plasmas | 2007

Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

Peter A. Amendt; C. Cerjan; Alex V. Hamza; D. E. Hinkel; J. L. Milovich; H. F. Robey

The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≈4keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≈790atm) in the inner shell, strict concentricity requirements on the two shells (<3μm), development of nanoporous (<100nm cell size) low-density (<100mg∕cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between th...


Review of Scientific Instruments | 2012

Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF

T. Ma; N. Izumi; R. Tommasini; D. K. Bradley; P. M. Bell; C. Cerjan; S. N. Dixit; T. Döppner; O. S. Jones; J. L. Kline; G. A. Kyrala; O. L. Landen; S. LePape; A. J. Mackinnon; H.-S. Park; P. K. Patel; R. Prasad; J. E. Ralph; S. P. Regan; V. A. Smalyuk; P. T. Springer; L. J. Suter; R. P. J. Town; S. V. Weber; S. H. Glenzer

Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

Collaboration


Dive into the C. Cerjan's collaboration.

Top Co-Authors

Avatar

D. A. Callahan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. W. Haan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. S. Clark

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. T. Casey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. T. Springer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Caggiano

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Ma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

H. F. Robey

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. L. Milovich

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. S. Jones

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge