Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.D. Dechow is active.

Publication


Featured researches published by C.D. Dechow.


Journal of Dairy Science | 2008

Mortality, Culling by Sixty Days in Milk, and Production Profiles in High- and Low-Survival Pennsylvania Herds

C.D. Dechow; R.C. Goodling

The objectives were to describe culling patterns and reasons for culling across lactation, estimate mortality and the proportion of cows leaving from 21 d before an expected calving date through 60 d in milk (DIM; CULL60) for Pennsylvania (PA) dairy herds, and to describe production measures for herds with high and low mortality and CULL60. Weekly culling frequencies and reasons for culling from 3 wk before a reported expected calving date through >or= 100 wk of lactation were calculated for all PA cows with at least 1 Dairy Herd Improvement test in 2005. It was estimated that at least 5.0% of PA dairy cows died in 2005, and that at least 7.6% were culled by 60 DIM. The majority of cows exiting the herd by 60 DIM either died (35.1%) or had a disposal code of injury/other (29.9%). A total of 137,951 test-day records from 20,864 cows in herds with high mortality (>8.0%) and CULL60 (>12.0%) and 136,906 test-day records from 12,993 cows in herds with low mortality (<1.4%) and CULL60 (<2.9%) were retained to describe differences among herds with high and low survival. Least squares means for weekly milk yield, fat and protein percentages, and somatic cell score (SCS) were estimated with a model that included fixed effects for herd environment (high or low survival) and week nested within herd environment and lactation; random effects were cow, herd-test-day, and error. Cows from herds with high mortality and CULL60 produced more milk in lactations 1 (+1.9 +/- 0.15 kg/d) and 2 (+0.9 +/- 0.16 kg/d), but less in lactations 4 (-0.7 +/- 0.22 kg/d), 5 (-1.4 +/- 0.29 kg/d), and >or= 6 (-0.7 +/- 0.32 kg/d) and had higher SCS (+0.24 +/- 0.02), more change in early-lactation fat percentage (-1.77% vs. -1.59%), and a greater frequency of fat-protein inversions (3.6 +/- 0.3%). There is an opportunity to manipulate management practices to reduce mortality and early-lactation culling rates, which will improve cow welfare and the efficiency of dairy production by capturing a greater proportion of potential lactation milk yield, increasing cow salvage values, and reducing replacement costs.


Journal of Dairy Science | 2010

Colostrogenesis: Mass transfer of immunoglobulin G1 into colostrum

Craig R. Baumrucker; A.M. Burkett; A.L. Magliaro-Macrina; C.D. Dechow

Bovine IgG(1) is thought to be specifically transported by a process of transcytosis across the mammary epithelial cells during colostrogenesis. Mammary IgG(1) appearance in cow colostrum has typically been reported as a concentration and shows IgG(1) concentration to be extremely variable because of animal variation, colostrum milking time, and water dilution effects. To identify animal IgG(1) transfer capacity and separate it from the other effects, our objective was to determine first colostrum IgG(1) total mass. We collected 214 samples of totally milked first colostrum with recorded colostrum weights from 11 Pennsylvania dairy farms that participated in Pennsylvania Dairy Herd Improvement Association, analyzed colostrum for IgG(1) by ELISA, and calculated total IgG(1) mass. Median and mean concentrations of IgG(1) were 29.4 mg/mL and 37.5+/-30.2 mg/mL, respectively, with a range of 9 to 166 mg/mL. However, total mass of IgG(1) had a median of 209.1g, mean of 291.6+/-315.8 g, and a range of 14 to 2,223 g. Colostrum IgG(1) concentration showed no relationship with colostrum volume, but IgG(1) mass had a positive relationship with volume. Colostrum IgG(1) mass was related to IgG(1) concentration (R(2)=0.58). Using DHIA records for 196 animals, we established milk production for these animals to a 15-d equivalent. An established milk secretion relationship to mammary parenchyma tissue (secretory tissue) was calculated and showed no relationship of IgG(1) mass with mammary parenchyma tissue. In addition, we show that approximately 10% of the sampled animals had IgG(1) mass greater than 1 standard deviation above the mean (high mass transfer) and represented all parities tested (1-7). Whereas first-lactation animals showed less overall calculated parenchyma tissue when compared with other parities, approximately 10% of the first-lactation group animals were capable of high mass transfer, with one transporting 2,029 g into first colostrum. Concentration variance of IgG(1) can be attributed to water inclusion, whereas mass transfer provides a clear indication of animal IgG(1) transfer capacity. The specific mechanism of bovine mammary IgG(1) transfer is not clear, but secretory tissue mass does not explain the variation observed. We hypothesize that the animal variation is attributable to endocrine regulation or genetic variation of the transporter(s).


Journal of Dairy Science | 2011

Short communication: Heritability of gross feed efficiency and associations with yield, intake, residual intake, body weight, and body condition score in 11 commercial Pennsylvania tie stalls

J.E. Vallimont; C.D. Dechow; J.M. Daubert; M.W. Dekleva; J.W. Blum; C.M. Barlieb; Wan-Sheng Liu; G.A. Varga; A.J. Heinrichs; Craig R. Baumrucker

The objectives of this study were to calculate the heritability of feed efficiency and residual feed intake, and examine the relationships between feed efficiency and other traits of productive and economic importance. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive mo. Measures of efficiency for this study were: dry matter intake efficiency (DMIE), defined as 305-d fat-corrected milk (FCM)/305-d DMI, net energy for lactation efficiency (NELE), defined as 305-d FCM/05-d NEL intake, and crude protein efficiency (CPE), defined as 305-d true protein yield/305-d CP intake. Residual feed intake (RFI) was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk (DIM). Data were analyzed with 3- and 4-trait animal models and included 305-d FCM or protein yield, DM, NEL, or CP intake, BW, BCS, BCS change between DIM 1 and 60, milk urea nitrogen, somatic cell score, RFI, or an alternative efficiency measure. Data were analyzed with and without significant covariates for BCS and BCS change between DIM 1 and 60. The average DMIE, NELE, and CPE were 1.61, 0.98, and 0.32, respectively. Heritability of gross feed efficiency was 0.14 for DMIE, 0.18 for NELE, and 0.21 for CPE, and heritability of RFI was 0.01. Body weight and BCS had high and negative correlations with the efficiency traits (-0.64 to -0.70), indicating that larger and fatter cows were less feed efficient than smaller and thinner cows. When BCS covariates were included in the model, cows identified as being highly efficient produced 2.3 kg/d less FCM in early lactation due to less early lactation loss of BCS. Results from this study suggest that selection for higher yield and lower BW will increase feed efficiency, and that body tissue mobilization should be considered.


Journal of Dairy Science | 2010

Genetic parameters of feed intake, production, body weight, body condition score, and selected type traits of Holstein cows in commercial tie-stall barns.

J.E. Vallimont; C.D. Dechow; J.M. Daubert; M.W. Dekleva; J.W. Blum; C.M. Barlieb; Wan-Sheng Liu; G.A. Varga; A.J. Heinrichs; Craig R. Baumrucker

The objectives of this study were to determine the feasibility of measuring feed intake in commercial tie-stall dairies and infer genetic parameters of feed intake, yield, somatic cell score, milk urea nitrogen, body weight (BW), body condition score (BCS), and linear type traits of Holstein cows. Feed intake, BW, and BCS were measured on 970 cows in 11 Pennsylvania tie-stall herds. Historical test-day data from these cows and 739 herdmates who were contemporaries during earlier lactations were also included. Feed intake was measured by researchers once per month over a 24-h period within 7 d of 6 consecutive Dairy Herd Information test days. Feed samples from each farm were collected monthly on the same day that feed intake was measured and were used to calculate intakes of dry matter, crude protein, and net energy of lactation. Test-day records were analyzed with multiple-trait animal models, and 305-d fat-corrected milk yield, dry matter intake, crude protein intake, net energy of lactation intake, average BW, and average BCS were derived from the test-day models. The 305-d traits were also analyzed with multiple-trait animal models that included a prediction of 40-wk dry matter intake derived from National Research Council equations. Heritability estimates for 305-d intake of dry matter, crude protein, and net energy of lactation ranged from 0.15 to 0.18. Genetic correlations of predicted dry matter intake with 305-d dry matter, crude protein, and net energy of lactation intake were 0.84, 0.90, and 0.94, respectively. Genetic correlations among the 3 intake traits and fat-corrected milk yield, BW, and stature were moderate to high (0.52 to 0.63). Results indicate that feed intake measured in commercial tie-stalls once per month has sufficient accuracy to enable genetic research. High-producing and larger cows were genetically inclined to have higher feed intake. The genetic correlation between observed and predicted intakes was less than unity, indicating potential variation in feed efficiency.


Journal of Dairy Science | 2008

Heritability of electronically recorded daily body weight and correlations with yield, dry matter intake, and body condition score.

J.K. Toshniwal; C.D. Dechow; B.G. Cassell; J.A.D.R.N. Appuhamy; G.A. Varga

The objectives of this study were to estimate heritability for daily body weight (BW) and genetic correlations of daily BW with daily milk yield (MY), body condition score (BCS), dry matter intake, fat yield, and protein yield. The Afiweigh cow body weighing system records BW of every cow exiting the milking parlor. The Afiweigh system was installed at the Pennsylvania State University dairy herd in August 2001 and in July 2004 at the Virginia Tech dairy herd. The edited data included 202,143 daily BW and 290,930 daily MY observations from 575 Pennsylvania State University and 120 Virginia Tech Holstein cows. Data were initially analyzed with a series of 4-trait animal models, followed by random regression models. The models included fixed effects for age within lactation group, week of lactation, and herd-date. Random effects included animal, permanent environment, and error. The order of the polynomials for random animal and permanent environmental effects with the random regression model for daily BW was 4 and 6, respectively. Heritability estimates for daily BW ranged from 0.48 to 0.57 and were largest between 200 and 230 and smallest at 305 d of lactation. Genetic correlations were large between BW and BCS (0.60). The genetic correlation between daily BW and MY was -0.14 but was positive (0.24) after adjusting for BCS. Electronically recorded daily BW is highly heritable, and genetic evaluations of daily BW and BW change across the lactation could be used to select for less early lactation BW loss.


Journal of Dairy Science | 2010

The genetic relationship of body weight and early-lactation health disorders in two experimental herds

E. Frigo; C.D. Dechow; Ottavia Pedron; B.G. Cassell

The objectives of this study were to estimate genetic parameters for body weight (BW) and BW change (BWC) and genetic correlations of BW and BWC with diseases and genomic predicted transmitting abilities (PTA) of productive and conformation traits of Holsteins during the first 120 DIM. Daily BW data were from the Afiweigh cow body weighing system (SAE Afikim, Kibbutz Afikim, Israel), which records BW as a cow exits the milking parlor. Disease categories included metabolic diseases, ketosis, infectious diseases, mastitis, reproductive diseases, and other diseases. Edited data included 68,914 and 11,615 daily BW observations from 441 Pennsylvania State University and 72 Virginia Tech Holstein cows, respectively. Two-trait random regression models were used to estimate relationships between BW, BWC, and diseases at 25, 38, and 58 mo of age at calving. Fixed effects for BW were age at calving nested within lactation group, week of lactation, and herd date; random effects for BW included animal, permanent environment, and error. Fixed effects for disease were herd-year-season of calving and age at calving nested within lactation group; random effects for disease were animal, permanent environment (for mastitis only), and error. Correlations of PTA for BW and BWC with genomic PTA for productive and type traits were also estimated with data from 117 cows. Heritability estimates for daily BW ranged from 0.34 to 0.63. Greater BW and less BWC were favorably correlated with ketosis, metabolic diseases, infectious diseases, and other diseases. The genetic correlation estimate between BW and ketosis was strongest at 60 DIM (-0.51), and genetic correlation estimates at 60 DIM with metabolic diseases (-0.52), infectious diseases (-0.81), and other diseases (-0.48) followed the same trend as ketosis. The genetic correlation estimate between BWC and ketosis was strongest for the change from 5 to 20 DIM (0.70) and was similar for metabolic diseases (0.37), infectious diseases (0.74), and other diseases (0.49). Correlations of BW and BWC with reproductive diseases tended to be in the reverse direction of those reported for ketosis. A larger PTA for BW was significantly correlated with smaller genomic PTA for milk yield, dairy form, rear udder height, and udder cleft. Predicted transmitting ability for BWC was negatively correlated with genomic PTA for protein percentage, strength, and hip width (ranging from -0.26 to -0.13 across lactation) and was positively correlated with dairy form, rear udder height, and udder cleft (ranging from 0.20 to 0.37 across lactation). Selection for reduced BW loss can be implemented with automated body weighing systems and may be successful in decreasing disease incidence in the early stages of lactation.


Journal of Dairy Science | 2009

Heritability estimates associated with alternative definitions of mastitis and correlations with somatic cell score and yield.

J.E. Vallimont; C.D. Dechow; C.G. Sattler; J.S. Clay

The objectives of this study were to compare alternative mastitis definitions and to estimate genetic correlations of producer-recorded mastitis with somatic cell score (SCS) and yield. Cow health events and lactation records from June 2002 through October 2007 were provided by Dairy Records Management Systems (Raleigh, NC). First- through fifth-lactation records from cows calving between 20 and 120 mo of age and that calved in a herd-year with at least 1% of cows with a clinical mastitis event were retained. The edited data contained 118,516 lactation records and 1,072,741 test-day records of 64,893 cows. Mastitis occurrence (1 = at least one mastitis event during lactation or test-day interval, 0 = no mastitis events), number of mastitis events during lactation, SCS, and yield were analyzed with animal models (single trait) or sire-maternal grandsire models (multiple trait) in ASREML. Comparisons were made among models assuming a normal distribution, a binary distribution, or Poisson distribution (for total episodes). The overall incidence of clinical mastitis was 15.4%; and heritability estimates ranged from 0.73% (test-day interval mastitis with a linear model) to 11.07% (number of mastitis episodes with a Poisson model). Increased mastitis incidence was genetically correlated with higher SCS (range 0.66 to 0.88) and was generally correlated with higher yield (range -0.03 to 0.40), particularly during first lactation (0.04 to 0.40). Significant genetic variation exists for clinical mastitis; and health events recorded by producers could be used to generate genetic evaluations for cow health. Sires ranked similarly for daughter mastitis susceptibility regardless of how mastitis was defined; however, test-day interval mastitis and a total count of mastitis episodes per lactation allow a higher proportion of mastitis treatments to be included in the genetic analysis.


BMC Genomics | 2014

Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF280BY, in cattle and their association with male reproductive traits in Holstein bulls.

Xiang-Peng Yue; C.D. Dechow; Ti-Cheng Chang; James Melton DeJarnette; Clifton Eugene Marshall; Chu-Zhao Lei; Wan-Sheng Liu

BackgroundRecent transcriptomic analysis of the bovine Y chromosome revealed at least six multi-copy protein coding gene families, including TSPY, HSFY and ZNF280BY, on the male-specific region (MSY). Previous studies indicated that the copy number variations (CNVs) of the human and bovine TSPY were associated with male fertility in men and cattle. However, the relationship between CNVs of the bovine Y-linked HSFY and ZNF280BY gene families and bull fertility has not been investigated.ResultsWe investigated the copy number (CN) of the bovine HSFY and ZNF280BY in a total of 460 bulls from 15 breeds using a quantitative PCR approach. We observed CNVs for both gene families within and between cattle breeds. The median copy number (MCN) of HSFY among all bulls was 197, ranging from 21 to 308. The MCN of ZNF280BY was 236, varying from 28 to 380. Furthermore, bulls in the Bos taurus (BTA) lineage had a significantly higher MCN (202) of HSFY than bulls in the Bos indicus (BIN) lineage (178), while taurine bulls had a significantly lower MCN (231) of ZNF280BY than indicine bulls (284). In addition, the CN of ZNF280BY was positively correlated to that of HSFY on the BTAY. Association analysis revealed that the CNVs of both HSFY and ZNF280BY were correlated negatively with testis size, while positively with sire conception rate.ConclusionThe bovine HSFY and ZNF280BY gene families have extensively expanded on the Y chromosome during evolution. The CN of both gene families varies significantly among individuals and cattle breeds. These variations were associated with testis size and bull fertility in Holstein, suggesting that the CNVs of HSFY and ZNF280BY may serve as valuable makers for male fertility selection in cattle.


Journal of Dairy Science | 2012

Hot topic: Association of telomere length with age, herd, and culling in lactating Holsteins

D.E. Brown; C.D. Dechow; Wan-Sheng Liu; K.J. Harvatine; Troy L. Ott

Telomere length variation may provide a quantitative measure of the effects of dairy management and selection practices on animal stress and welfare. The objective of this study was to evaluate the association between telomere length in Holstein cattle with age, herd, and survival. A multiplex quantitative PCR (qPCR) procedure was utilized to estimate telomere length for 201 Holstein cows from 10 herds following DNA extraction from blood. Primers were designed to amplify a 79-bp telomere product and a 144-bp product of a standard reference gene (β-globin). Both primer sets were included in the same reaction well to enable the analysis of relative quantity (qT) of telomere product compared with β-globin product. Triplicate samples were run for each cow, and mixed models were used to analyze the qPCR results. Younger cows were significantly associated with higher qT, and significant variation was observed among herds for qT. Cows with short telomeres were more likely to be culled in the subsequent year than cows with above-average telomere lengths. Multiplex qPCR provides a cost-effective method of assessing telomere length. Variation in telomere length might provide insights into how management practices and genetic selection influence cow stress and physiological responses to stress.


Journal of Dairy Science | 2013

Short communication: Feed utilization and its associations with fertility and productive life in 11 commercial Pennsylvania tie-stall herds

J.E. Vallimont; C.D. Dechow; J.M. Daubert; M.W. Dekleva; J.W. Blum; Wan-Sheng Liu; G.A. Varga; A.J. Heinrichs; Craig R. Baumrucker

The objectives of this study were to quantify the relationships of various definitions of feed utilization with both fertility and productive life. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive months. Measures of feed utilization for this study were dry matter intake (DMI), dry matter intake efficiency (DME, defined as 305-d fat-corrected milk/305-d DMI), DME with intake adjusted for maintenance requirements (DMEM), crude protein efficiency (defined as 305-d protein yield/305-d crude protein intake), and 2 definitions of residual feed intake (RFI). The first, RFI(reg), was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk. The second, RFI(NRC), was estimated by subtracting 305-d DMI predicted according to their fat-corrected milk and BW from actual 305-d DMI. Data were analyzed with 8-trait animal models and included one measure of feed utilization and milk, fat, and protein yields, BW, BCS, days open (DO), and productive life (PL). The genetic correlation between DME and DO was 0.53 (± 0.19) and that between DME and PL was 0.66 (± 0.10). These results show that cows who had higher feed efficiency had greater DO (undesirable) and greater PL (desirable). Results were similar for the genetic correlation between DO and crude protein efficiency (0.42). Productive life had genetic correlations of -0.22 with BW and -0.48 with BCS, suggesting that larger, fatter cows in this study had shorter PL. Correlations between estimated breeding values for feed utilization and official sire genetic evaluations for fertility were in agreement with the results from the multiple-trait models. Selection programs intended to enhance feed efficiency should factor relationships with functional traits to avoid unfavorable effects on cow fertility.

Collaboration


Dive into the C.D. Dechow's collaboration.

Top Co-Authors

Avatar

Craig R. Baumrucker

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Wan-Sheng Liu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A.J. Heinrichs

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.A. Varga

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J.E. Vallimont

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

J.M. Daubert

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

M.W. Dekleva

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge