Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. David James is active.

Publication


Featured researches published by C. David James.


Cancer Cell | 2010

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

Roel G.W. Verhaak; Katherine A. Hoadley; Elizabeth Purdom; Victoria Wang; Yuan Qi; Matthew D. Wilkerson; C. Ryan Miller; Li Ding; Todd R. Golub; Jill P. Mesirov; Gabriele Alexe; Michael S. Lawrence; Michael O'Kelly; Pablo Tamayo; Barbara A. Weir; Stacey Gabriel; Wendy Winckler; Supriya Gupta; Lakshmi Jakkula; Heidi S. Feiler; J. Graeme Hodgson; C. David James; Jann N. Sarkaria; Cameron Brennan; Ari Kahn; Paul T. Spellman; Richard Wilson; Terence P. Speed; Joe W. Gray; Matthew Meyerson

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.


Cancer Cell | 2010

A Hierarchy of Self-Renewing Tumor-Initiating Cell Types in Glioblastoma

Ruihuan Chen; Merry Nishimura; Stephanie M. Bumbaca; Samir Kharbanda; William F. Forrest; Ian Kasman; Joan M. Greve; Robert Soriano; Laurie L. Gilmour; Celina Sanchez Rivers; Zora Modrusan; Serban Nacu; Steve Guerrero; Kyle A. Edgar; Jeffrey Wallin; Katrin Lamszus; Manfred Westphal; Susanne Heim; C. David James; Scott R. VandenBerg; Joseph F. Costello; Scott Moorefield; Cynthia Cowdrey; Michael D. Prados; Heidi S. Phillips

The neural stem cell marker CD133 is reported to identify cells within glioblastoma (GBM) that can initiate neurosphere growth and tumor formation; however, instances of CD133(-) cells exhibiting similar properties have also been reported. Here, we show that some PTEN-deficient GBM tumors produce a series of CD133(+) and CD133(-) self-renewing tumor-initiating cell types and provide evidence that these cell types constitute a lineage hierarchy. Our results show that the capacities for self-renewal and tumor initiation in GBM need not be restricted to a uniform population of stemlike cells, but can be shared by a lineage of self-renewing cell types expressing a range of markers of forebrain lineage.


Journal of Clinical Oncology | 2009

Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma

Michael D. Prados; Susan M. Chang; Nicholas Butowski; Rebecca DeBoer; Rupa Parvataneni; Hannah Carliner; Paul Kabuubi; Jennifer Ayers-Ringler; Jane Rabbitt; Margaretta Page; Anne Fedoroff; Penny K. Sneed; Mitchel S. Berger; Michael W. McDermott; Andrew T. Parsa; Scott R. VandenBerg; C. David James; Kathleen R. Lamborn; David Stokoe; Daphne A. Haas-Kogan

PURPOSE This open-label, prospective, single-arm, phase II study combined erlotinib with radiation therapy (XRT) and temozolomide to treat glioblastoma multiforme (GBM) and gliosarcoma. The objectives were to determine efficacy of this treatment as measured by survival and to explore the relationship between molecular markers and treatment response. PATIENTS AND METHODS Sixty-five eligible adults with newly diagnosed GBM or gliosarcoma were enrolled. We intended to treat patients not currently treated with enzyme-inducing antiepileptic drugs (EIAEDs) with 100 mg/d of erlotinib during XRT and 150 mg/d after XRT. Patients receiving EIAEDs were to receive 200 mg/d of erlotinib during XRT and 300 mg/d after XRT. After XRT, the erlotinib dose was escalated until patients developed tolerable grade 2 rash or until the maximum allowed dose was reached. All patients received temozolomide during and after XRT. Molecular markers of epidermal growth factor receptor (EGFR), EGFRvIII, phosphatase and tensin homolog (PTEN), and methylation status of the promotor region of the MGMT gene were analyzed from tumor tissue. Survival was compared with outcomes from two historical phase II trials. RESULTS Median survival was 19.3 months in the current study and 14.1 months in the combined historical control studies, with a hazard ratio for survival (treated/control) of 0.64 (95% CI, 0.45 to 0.91). Treatment was well tolerated. There was a strong positive correlation between MGMT promotor methylation and survival, as well as an association between MGMT promotor-methylated tumors and PTEN positivity shown by immunohistochemistry with improved survival. CONCLUSION Patients treated with the combination of erlotinib and temozolomide during and following radiotherapy had better survival than historical controls. Additional studies are warranted.


Science | 2011

Mutational inactivation of STAG2 causes aneuploidy in human cancer.

David A. Solomon; Taeyeon Kim; Laura A. Díaz-Martínez; Joshlean Fair; Abdel G. Elkahloun; Brent T. Harris; Jeffrey A. Toretsky; Steven A. Rosenberg; Neerav Shukla; Marc Ladanyi; Yardena Samuels; C. David James; Hongtao Yu; Jung-Sik Kim; Todd Waldman

Tumors harbor mutations that disrupt chromatid separation during cell division, leading to chromosomal abnormalities. Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.


Genes & Development | 2013

The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression

Kui Ming Chan; Dong Fang; Haiyun Gan; Rintaro Hashizume; Chuanhe Yu; Mark A. Schroeder; Nalin Gupta; Sabine Mueller; C. David James; Robert B. Jenkins; Jann N. Sarkaria; Zhiguo Zhang

Recent studies have identified a Lys 27-to-methionine (K27M) mutation at one allele of H3F3A, one of the two genes encoding histone H3 variant H3.3, in 60% of high-grade pediatric glioma cases. The median survival of this group of patients after diagnosis is ∼1 yr. Here we show that the levels of H3K27 di- and trimethylation (H3K27me2 and H3K27me3) are reduced globally in H3.3K27M patient samples due to the expression of the H3.3K27M mutant allele. Remarkably, we also observed that H3K27me3 and Ezh2 (the catalytic subunit of H3K27 methyltransferase) at chromatin are dramatically increased locally at hundreds of gene loci in H3.3K27M patient cells. Moreover, the gain of H3K27me3 and Ezh2 at gene promoters alters the expression of genes that are associated with various cancer pathways. These results indicate that H3.3K27M mutation reprograms epigenetic landscape and gene expression, which may drive tumorigenesis.


Neuro-oncology | 2005

Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme

Caterina Giannini; Jann N. Sarkaria; Atsushi Saito; Joon H. Uhm; Evanthia Galanis; Brett L. Carlson; Mark A. Schroeder; C. David James

We have previously described a panel of serially transplantable glioblastoma multiforme xenograft lines established by direct subcutaneous injection of patient tumor tissue in the flanks of nude mice. Here we report the characterization of four of these lines with respect to their histopathologic, genetic, and growth properties following heterotopic-to-orthotopic (flank-to-intracranial) transfer. Cells from short-term cultures, established from excised flank xenografts, were harvested and injected into the brains of nude mice (10(6) cells per injection). The intracranial tumors generated from these injections were all highly mitotic as well as highly invasive, but they lacked necrotic features in most instances and failed to show endothelial cell proliferation in all instances. For mice receiving injections from a common explant culture, tumor intracranial growth rate was consistent, as indicated by relatively narrow ranges in survival time. In contrast to the loss of epidermal growth factor receptor gene (EGFR) amplification in cell culture, high-level amplification and overexpression of EGFR were retained in intracranial tumors established from two EGFR-amplified flank tumors. A third intracranial tumor retained patient tumor amplification and high-level expression of platelet-derived growth factor receptor alpha gene. Because the heterotopic-to-orthotopic transfer and propagation of glioblastoma multiforme preserves the receptor tyrosine kinase (RTK) gene amplification of patient tumors, this approach should facilitate investigations for determining the extent to which RTK amplification status influences tumor response to RTK-directed therapies. The fact that such studies were carried out by using an invasive tumor model in an anatomically appropriate context should ensure a rigorous preclinical assessment of agent efficacy.


Journal of Clinical Oncology | 2011

Evidence for Sequenced Molecular Evolution of IDH1 Mutant Glioblastoma From a Distinct Cell of Origin

Albert Lai; Samir Kharbanda; Whitney B. Pope; Anh Tran; Orestes E. Solis; Franklin Peale; William F. Forrest; Kanan Pujara; Jose Carrillo; Ajay Pandita; Benjamin M. Ellingson; Chauncey W. Bowers; Robert Soriano; Nils Ole Schmidt; Sankar Mohan; William H. Yong; Somasekar Seshagiri; Zora Modrusan; Zhaoshi Jiang; Kenneth D. Aldape; Paul S. Mischel; Linda M. Liau; Cameron Escovedo; Weidong Chen; Phioanh L. Nghiemphu; C. David James; Michael D. Prados; Manfred Westphal; Katrin Lamszus; Timothy F. Cloughesy

PURPOSE Mutation in isocitrate dehydrogenase 1 (IDH1) at R132 (IDH1(R132MUT)) is frequent in low-grade diffuse gliomas and, within glioblastoma (GBM), has been proposed as a marker for GBMs that arise by transformation from lower-grade gliomas, regardless of clinical history. To determine how GBMs arising with IDH1(R132MUT) differ from other GBMs, we undertook a comprehensive comparison of patients presenting clinically with primary GBM as a function of IDH1(R132) mutation status. PATIENTS AND METHODS In all, 618 treatment-naive primary GBMs and 235 lower-grade diffuse gliomas were sequenced for IDH1(R132) and analyzed for demographic, radiographic, anatomic, histologic, genomic, epigenetic, and transcriptional characteristics. RESULTS Investigation revealed a constellation of features that distinguishes IDH1(R132MUT) GBMs from other GBMs (including frontal location and lesser extent of contrast enhancement and necrosis), relates them to lower-grade IDH1(R132MUT) gliomas, and supports the concept that IDH1(R132MUT) gliomas arise from a neural precursor population that is spatially and temporally restricted in the brain. The observed patterns of DNA sequence, methylation, and copy number alterations support a model of ordered molecular evolution of IDH1(R132MUT) GBM in which the appearance of mutant IDH1 protein is an initial event, followed by production of p53 mutant protein, and finally by copy number alterations of PTEN and EGFR. CONCLUSION Although histologically similar, GBMs arising with and without IDH1(R132MUT) appear to represent distinct disease entities that arise from separate cell types of origin as the result of largely nonoverlapping sets of molecular events. Optimal clinical management should account for the distinction between these GBM disease subtypes.


Journal of Clinical Oncology | 2007

Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma

Christopher E. Pelloski; Karla V. Ballman; Alfred F. Furth; Li Zhang; E. Lin; Erik P. Sulman; Krishna Bhat; J. Matthew McDonald; W. K. Alfred Yung; Howard Colman; Shiao Y. Woo; Amy B. Heimberger; Dima Suki; Michael D. Prados; Susan M. Chang; Fred G. Barker; Jan C. Buckner; C. David James; Kenneth D. Aldape

PURPOSE The clinical significance of epidermal growth factor receptor variant III (EGFRvIII) expression in glioblastoma multiforme (GBM) and its relationship with other key molecular markers are not clear. We sought to evaluate the clinical significance of GBM subtypes as defined by EGFRvIII status. PATIENTS AND METHODS The expression of EGFRvIII was assessed by immunohistochemistry in 649 patients with newly diagnosed GBM. These data were then examined in conjunction with the expression of phospho-intermediates (in a subset of these patients) of downstream AKT and Ras pathways and YKL-40 as well as with known clinical risk factors, including the Radiation Therapy Oncology Groups recursive partitioning analysis (RTOG-RPA) class. RESULTS The RTOG-RPA class was highly predictive of survival in EGFRvIII-negative patients but much less predictive in EGFRvIII-positive patients. These findings were seen in both an initial test set (n = 268) and a larger validation set (n = 381). Similarly, activation of the AKT/MAPK pathways and YKL-40 positivity were predictive of poor outcome in EGFRvIII-negative patients but not in EGFRvIII-positive patients. Pair-wise combinations of markers identified EGFRvIII and YKL-40 as prognostically important. In particular, outcome in patients with EGFRvIII-negative/YKL-40-negative tumors was significantly better than the outcome in patients with the other three combinations of these two markers. CONCLUSION Established prognostic factors in GBM were not predictive of outcome in the EGFRvIII-positive subset, although this requires confirmation in independent data sets. GBMs negative for both EGFRvIII and YKL-40 show less aggressive behavior.


Clinical Cancer Research | 2008

Mechanisms of chemoresistance to alkylating agents in malignant glioma.

Jann N. Sarkaria; Gaspar J. Kitange; C. David James; Ruth Plummer; Hilary Calvert; Michael Weller; Wolfgang Wick

Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.


American Journal of Pathology | 2000

Incidence and Subtype Specificity of API2-MALT1 Fusion Translocations in Extranodal, Nodal, and Splenic Marginal Zone Lymphomas

Ellen D. Remstein; C. David James; Paul J. Kurtin

The t(11;18)(q21;q21) is thought to represent an important primary event in the development of marginal zone lymphomas, although an accurate estimation of the frequency and distribution of this genetic alteration among nodal, splenic, and extranodal marginal zone lymphoma types has yet to be determined. Recently, molecular genetic studies have shown that this translocation results in the fusion of the API2 gene on chromosome 11 and a novel gene termed MALT1 on chromosome 18. To investigate the incidence of API2-MALT1 fusion transcripts among marginal zone lymphomas and to determine possible marginal zone lymphoma subtype associations, we used reverse transcriptase-polymerase chain reaction to analyze RNAs extracted from frozen tissue samples of 99 marginal zone lymphomas. Fifty-seven involved diverse extranodal sites including 14 stomach, 11 lung, 7 orbit, 7 parotid, 5 thyroid, 5 lacrimal gland, 3 small intestine, 2 large intestine, 1 kidney, 1 paraspinal region and 1 skin. Twenty-one primary splenic and twenty-one primary nodal marginal zone lymphomas were also studied. API2-MALT1 fusion transcripts were detected in 12 of 57 extranodal marginal zone lymphomas (21%), but in none of the nodal or splenic cases. The cDNA sequences of the fusion transcripts were determined, revealing variation in the coding sequence fusion point for both API2 and MALT1. The findings suggest that t(11;18)(q21;q21) is restricted to extranodal marginal zone lymphomas and that these tumors have distinct genetic etiologies in comparison with their splenic and nodal counterparts.

Collaboration


Dive into the C. David James's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Ozawa

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Mueller

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge