Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Weiss is active.

Publication


Featured researches published by William A. Weiss.


Cell | 2006

A Pharmacological Map of the PI3-K Family Defines a Role for p110α in Insulin Signaling

Zachary A. Knight; Beatriz González; Morri Feldman; Eli R. Zunder; David D. Goldenberg; Olusegun Williams; Robbie Loewith; David Stokoe; András Balla; Balázs Tóth; Tamas Balla; William A. Weiss; Roger Williams; Kevan M. Shokat

Phosphoinositide 3-kinases (PI3-Ks) are an important emerging class of drug targets, but the unique roles of PI3-K isoforms remain poorly defined. We describe here an approach to pharmacologically interrogate the PI3-K family. A chemically diverse panel of PI3-K inhibitors was synthesized, and their target selectivity was biochemically enumerated, revealing cryptic homologies across targets and chemotypes. Crystal structures of three inhibitors bound to p110gamma identify a conformationally mobile region that is uniquely exploited by selective compounds. This chemical array was then used to define the PI3-K isoforms required for insulin signaling. We find that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110alpha activity. Compounds targeting p110alpha block the acute effects of insulin treatment in vivo, whereas a p110beta inhibitor has no effect. These results illustrate systematic target validation using a matrix of inhibitors that span a protein family.


Clinical Cancer Research | 2011

Principles and Current Strategies for Targeting Autophagy for Cancer Treatment

Ravi K. Amaravadi; Jennifer Lippincott-Schwartz; Xiao Ming Yin; William A. Weiss; Naoko Takebe; William Timmer; Robert S. DiPaola; Michael T. Lotze; Eileen White

Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy. Clin Cancer Res; 17(4); 654–66. ©2011 AACR.


The EMBO Journal | 1997

Targeted expression of MYCN causes neuroblastoma in transgenic mice

William A. Weiss; Kenneth D. Aldape; Gayatry Mohapatra; Burt G. Feuerstein; J. Michael Bishop

The proto‐oncogene MYCN is often amplified in human neuroblastomas. The assumption that the amplification contributes to tumorigenesis has never been tested directly. We have created transgenic mice that overexpress MYCN in neuroectodermal cells and develop neuroblastoma. Analysis of tumors by comparative genomic hybridization revealed gains and losses of at least seven chromosomal regions, all of which are syntenic with comparable abnormalities detected in human neuroblastomas. In addition, we have shown that increases in MYCN dosage or deficiencies in either of the tumor suppressor genes NF1 or RB1 can augment tumorigenesis by the transgene. Our results provide direct evidence that MYCN can contribute to the genesis of neuroblastoma, suggest that the genetic events involved in the genesis of neuroblastoma can be tumorigenic in more than one chronological sequence, and offer a model for further study of the pathogenesis and therapy of neuroblastoma.


Science | 2014

Mutational Analysis Reveals the Origin and Therapy-driven Evolution of Recurrent Glioma

Brett E. Johnson; Tali Mazor; Chibo Hong; Michael Barnes; Koki Aihara; Cory Y. McLean; Shaun D. Fouse; Shogo Yamamoto; Hiroki R. Ueda; Kenji Tatsuno; Saurabh Asthana; Llewellyn E. Jalbert; Sarah J. Nelson; Andrew W. Bollen; W. Clay Gustafson; Elise Charron; William A. Weiss; Ivan Smirnov; Jun S. Song; Adam B. Olshen; Soonmee Cha; Yongjun Zhao; Richard A. Moore; Andrew J. Mungall; Steven J.M. Jones; Martin Hirst; Marco A. Marra; Nobuhito Saito; Hiroyuki Aburatani; Akitake Mukasa

Back with a Vengeance After surgery, gliomas (a type of brain tumor) recur in nearly all patients and often in a more aggressive form. Johnson et al. (p. 189, published online 12 December 2013) used exome sequencing to explore whether recurrent tumors harbor different mutations than the primary tumors and whether the mutational profile in the recurrences is influenced by postsurgical treatment of patients with temozolomide (TMZ), a chemotherapeutic drug known to damage DNA. In more than 40% of cases, at least half of the mutations in the initial glioma were undetected at recurrence. The recurrent tumors in many of the TMZ-treated patients bore the signature of TMZ-induced mutagenesis and appeared to follow an evolutionary path to high-grade glioma distinct from that in untreated patients. Primary brain tumors and their recurrences can exhibit vastly different mutational profiles. Tumor recurrence is a leading cause of cancer mortality. Therapies for recurrent disease may fail, at least in part, because the genomic alterations driving the growth of recurrences are distinct from those in the initial tumor. To explore this hypothesis, we sequenced the exomes of 23 initial low-grade gliomas and recurrent tumors resected from the same patients. In 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, including driver mutations in TP53, ATRX, SMARCA4, and BRAF; this suggests that recurrent tumors are often seeded by cells derived from the initial tumor at a very early stage of their evolution. Notably, tumors from 6 of 10 patients treated with the chemotherapeutic drug temozolomide (TMZ) followed an alternative evolutionary path to high-grade glioma. At recurrence, these tumors were hypermutated and harbored driver mutations in the RB (retinoblastoma) and Akt-mTOR (mammalian target of rapamycin) pathways that bore the signature of TMZ-induced mutagenesis.


Cancer Discovery | 2013

Targeting MYCN in Neuroblastoma by BET Bromodomain Inhibition

Alexandre Puissant; Stacey M. Frumm; Gabriela Alexe; Christopher F. Bassil; Jun Qi; Yvan Chanthery; Erin A. Nekritz; Rhamy Zeid; William Clay Gustafson; Patricia Greninger; Matthew J Garnett; Ultan McDermott; Cyril H. Benes; Andrew L. Kung; William A. Weiss; James E. Bradner; Kimberly Stegmaier

Bromodomain inhibition comprises a promising therapeutic strategy in cancer, particularly for hematologic malignancies. To date, however, genomic biomarkers to direct clinical translation have been lacking. We conducted a cell-based screen of genetically defined cancer cell lines using a prototypical inhibitor of BET bromodomains. Integration of genetic features with chemosensitivity data revealed a robust correlation between MYCN amplification and sensitivity to bromodomain inhibition. We characterized the mechanistic and translational significance of this finding in neuroblastoma, a childhood cancer with frequent amplification of MYCN. Genome-wide expression analysis showed downregulation of the MYCN transcriptional program accompanied by suppression of MYCN transcription. Functionally, bromodomain-mediated inhibition of MYCN impaired growth and induced apoptosis in neuroblastoma. BRD4 knockdown phenocopied these effects, establishing BET bromodomains as transcriptional regulators of MYCN. BET inhibition conferred a significant survival advantage in 3 in vivo neuroblastoma models, providing a compelling rationale for developing BET bromodomain inhibitors in patients with neuroblastoma.


Nature | 2012

Clonal selection drives genetic divergence of metastatic medulloblastoma

Xiaochong Wu; Paul A. Northcott; Adrian Dubuc; Adam J. Dupuy; David Shih; Hendrik Witt; Sidney Croul; Eric Bouffet; Daniel W. Fults; Charles G. Eberhart; Livia Garzia; Timothy Van Meter; David Zagzag; Nada Jabado; Jeremy Schwartzentruber; Jacek Majewski; Todd E. Scheetz; Stefan M. Pfister; Andrey Korshunov; Xiao-Nan Li; Stephen W. Scherer; Yoon-Jae Cho; Keiko Akagi; Tobey J. MacDonald; Jan Koster; Martin McCabe; Aaron L. Sarver; V. Peter Collins; William A. Weiss; David A. Largaespada

Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies.


Cancer Cell | 2011

Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma.

Hendrik Witt; Stephen C. Mack; Marina Ryzhova; Sebastian Bender; Martin Sill; Ruth Isserlin; Axel Benner; Thomas Hielscher; Till Milde; Marc Remke; David T. W. Jones; Paul A. Northcott; Livia Garzia; Kelsey C. Bertrand; Andrea Wittmann; Yuan Yao; Stephen S. Roberts; Luca Massimi; Tim Van Meter; William A. Weiss; Nalin Gupta; Wiesia Grajkowska; Boleslaw Lach; Yoon-Jae Cho; Andreas von Deimling; Andreas E. Kulozik; Olaf Witt; Gary D. Bader; Cynthia Hawkins; Uri Tabori

Despite the histological similarity of ependymomas from throughout the neuroaxis, the disease likely comprises multiple independent entities, each with a distinct molecular pathogenesis. Transcriptional profiling of two large independent cohorts of ependymoma reveals the existence of two demographically, transcriptionally, genetically, and clinically distinct groups of posterior fossa (PF) ependymomas. Group A patients are younger, have laterally located tumors with a balanced genome, and are much more likely to exhibit recurrence, metastasis at recurrence, and death compared with Group B patients. Identification and optimization of immunohistochemical (IHC) markers for PF ependymoma subgroups allowed validation of our findings on a third independent cohort, using a human ependymoma tissue microarray, and provides a tool for prospective prognostication and stratification of PF ependymoma patients.


Nature | 2014

Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.

Stephen C. Mack; Hendrik Witt; Rosario M. Piro; Lei Gu; Scott Zuyderduyn; A. M. Stütz; Xiaosong Wang; Marco Gallo; Livia Garzia; Kory Zayne; Xiaoyang Zhang; Vijay Ramaswamy; Natalie Jäger; David T. W. Jones; Martin Sill; Trevor J. Pugh; M. Ryzhova; Khalida Wani; David Shih; Renee Head; Marc Remke; S. D. Bailey; Thomas Zichner; Claudia C. Faria; Mark Barszczyk; Sebastian Stark; Huriye Seker-Cin; Sonja Hutter; Pascal Johann; Sebastian Bender

Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.


Science Signaling | 2010

Akt and Autophagy Cooperate to Promote Survival of Drug-Resistant Glioma

Qi-Wen Fan; Christopher H.K. Cheng; Christopher S. Hackett; Morris E. Feldman; Benjamin T. Houseman; Theodore Nicolaides; Daphne A. Haas-Kogan; Charles David James; Scott A. Oakes; Jayanta Debnath; Kevan M. Shokat; William A. Weiss

Combined inhibition of PI3K, mTOR, and autophagy promotes glioma cell death. Blocking All Escape Routes Many cancers, including glioma, are associated with increased signaling through the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway, which promotes cell growth, proliferation, and survival. This suggests that pharmacological inhibition of key kinases in this pathway could provide an approach to antineoplastic therapy. Disappointingly, however, inhibitors of PI3K, Akt, or mTOR typically block cancer cell growth rather than eliciting the death of malignant cells, limiting their utility as antineoplastic agents. Noting that autophagy, a process of autodigestion that can enable cells to endure periods of stress and nutrient deprivation, could provide a survival mechanism under conditions of decreased PI3K-Akt-mTOR signaling, Fan et al. explored the effects of various combinations of kinase and autophagy inhibitors on glioma cell survival. Inhibition of mTOR complex 1 (mTORC1) with rapamycin induced autophagy; however, cells survived the combination of rapamycin with inhibitors of autophagy by activating Akt signaling. In contrast, the combined inhibition of mTORC1, PI3K, and autophagy, or that of mTORC1, mTORC2, and autophagy, triggered apoptosis—the process of programmed cell death. The authors elicited cell death with combinations of drugs that are either now in use in patients or in clinical trials, raising the hope that this approach could be readily translatable to human therapy. Although the phosphatidylinositol 3-kinase to Akt to mammalian target of rapamycin (PI3K-Akt-mTOR) pathway promotes survival signaling, inhibitors of PI3K and mTOR induce minimal cell death in PTEN (phosphatase and tensin homolog deleted from chromosome 10) mutant glioma. Here, we show that the dual PI3K-mTOR inhibitor PI-103 induces autophagy in a form of glioma that is resistant to therapy. Inhibitors of autophagosome maturation cooperated with PI-103 to induce apoptosis through the mitochondrial pathway, indicating that the cellular self-digestion process of autophagy acted as a survival signal in this setting. Not all inhibitors of mTOR synergized with inhibitors of autophagy. Rapamycin delivered alone induced autophagy, yet cells survived inhibition of autophagosome maturation because of rapamycin-mediated activation of Akt. In contrast, adenosine 5′-triphosphate–competitive inhibitors of mTOR stimulated autophagy more potently than did rapamycin, with inhibition of mTOR complexes 1 and 2 contributing independently to induction of autophagy. We show that combined inhibition of PI3K and mTOR, which activates autophagy without activating Akt, cooperated with inhibition of autophagy to cause glioma cells to undergo apoptosis. Moreover, the PI3K-mTOR inhibitor NVP-BEZ235, which is in clinical use, synergized with the lysosomotropic inhibitor of autophagy, chloroquine, another agent in clinical use, to induce apoptosis in glioma xenografts in vivo, providing a therapeutic approach potentially translatable to humans.


Cancer Research | 2007

A Dual Phosphoinositide-3-Kinase α/mTOR Inhibitor Cooperates with Blockade of Epidermal Growth Factor Receptor in PTEN-Mutant Glioma

Qi-Wen Fan; Christine K. Cheng; Theodore Nicolaides; Christopher S. Hackett; Zachary A. Knight; Kevan M. Shokat; William A. Weiss

We have shown previously that blockade of epidermal growth factor receptor (EGFR) cooperates with a pan-selective inhibitor of phosphoinositide-3-kinase (PI3K) in EGFR-driven glioma. In this communication, we tested EGFR-driven glioma differing in PTEN status, treating with the EGFR inhibitor erlotinib and a novel dual inhibitor of PI3Kalpha and mTOR (PI-103). Erlotinib blocked proliferation only in PTEN(wt) cells expressing EGFR. Although erlotinib monotherapy showed little effect in PTEN(mt) glioma, PI-103 greatly augmented the antiproliferative efficacy of erlotinib in this setting. To address the importance of PI3K blockade, we showed in PTEN(mt) glioma that combining PI-103 and erlotinib was superior to either monotherapy or to therapy combining erlotinib with either rapamycin (an inhibitor of mTOR) or PIK-90 (an inhibitor of PI3Kalpha). These experiments show that a dual inhibitor of PI3Kalpha and mTOR augments the activity of EGFR blockade, offering a mechanistic rationale for targeting EGFR, PI3Kalpha, and mTOR in the treatment of EGFR-driven, PTEN-mutant glioma.

Collaboration


Dive into the William A. Weiss's collaboration.

Top Co-Authors

Avatar

Qi-Wen Fan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sabine Mueller

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaodong Yang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge