Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Fernando Valenzuela is active.

Publication


Featured researches published by C. Fernando Valenzuela.


The Journal of Neuroscience | 2004

Alcohol Enhances GABAergic Transmission to Cerebellar Granule Cells via an Increase in Golgi Cell Excitability

Mario Carta; Manuel Mameli; C. Fernando Valenzuela

Alcohol intoxication alters coordination and motor skills, and this is responsible for a significant number of traffic accident-related deaths around the world. Although the precise mechanism of action of ethanol (EtOH) is presently unknown, studies suggest that it acts, in part, by interfering with normal cerebellar functioning. An important component of cerebellar circuits is the granule cell. The excitability of these abundantly expressed neurons is controlled by the Golgi cell, a subtype of GABAergic interneuron. Granule cells receive GABAergic input in the form of phasic and tonic currents that are mediated by synaptic and extrasynaptic receptors, respectively. Using the acute cerebellar slice preparation and patch-clamp electrophysiological techniques, we found that ethanol induces a parallel increase in both the frequency of spontaneous IPSCs and the magnitude of the tonic current. EtOH (50 mm) did not produce this effect when spontaneous action potentials were blocked with tetrodotoxin. Recordings in the loose-patch cell-attached configuration demonstrated that ethanol increases the frequency of spontaneous action potentials in Golgi cells. Taken together, these findings indicate that ethanol enhances GABAergic inhibition of granule cells via a presynaptic mechanism that involves an increase in action potential-dependent GABA release from Golgi cells. This effect is likely to have an impact on the flow of information through the cerebellar cortex and may contribute to the mechanism by which acute ingestion of alcoholic beverages induces motor impairment.


Journal of Biological Chemistry | 2002

Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigma1-like receptors.

Douglas A. Meyer; Mario Carta; L. Donald Partridge; Douglas F. Covey; C. Fernando Valenzuela

Pregnenolone sulfate (PREGS), one of the most abundantly produced neurosteroids in the mammalian brain, improves cognitive performance in rodents. The mechanism of this effect has been attributed to its allosteric modulatory actions on glutamate- and γ-aminobutyric acid-gated ion channels. Here we report a novel effect of PREGS that could also mediate some of its actions in the nervous system. We found that PREGS induces a robust potentiation of the frequency but not the amplitude of miniature excitatory postsynaptic currents (mEPSCs) mediated by α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured hippocampal neurons. PREGS also decreased paired pulse facilitation of autaptic EPSCs evoked by depolarization, indicating that it modulates glutamate release probability presynaptically. PREGS potentiation of mEPSCs was mimicked by dehydroepiandrosterone sulfate and (+)-pentazocine but not by (−)-pentazocine, the synthetic (−)-enantiomer of PREGS or the inactive steroid isopregnanolone. The ς receptor antagonists, haloperidol and BD-1063, blocked the effect of PREGS on mEPSCs, as did pertussis toxin and the membrane-permeable Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (acetoxymethyl) ester. These results suggest that PREGS increases spontaneous glutamate release via activation of a presynaptic Gi/o-coupled ς receptor and an elevation in intracellular Ca2+ levels. We postulate that presynaptic actions of neurosteroids have a role in the maturation and/or maintenance of synaptic networks and the processing of information in the central nervous system.


The Journal of Neuroscience | 2005

Neurosteroid-Induced Plasticity of Immature Synapses via Retrograde Modulation of Presynaptic NMDA Receptors

Manuel Mameli; Mario Carta; L. Donald Partridge; C. Fernando Valenzuela

Neurosteroids are produced de novo in neuronal and glial cells, which begin to express steroidogenic enzymes early in development. Studies suggest that neurosteroids may play important roles in neuronal circuit maturation via autocrine and/or paracrine actions. However, the mechanism of action of these agents is not fully understood. We report here that the excitatory neurosteroid pregnenolone sulfate induces a long-lasting strengthening of AMPA receptor-mediated synaptic transmission in rat hippocampal neurons during a restricted developmental period. Using the acute hippocampal slice preparation and patch-clamp electrophysiological techniques, we found that pregnenolone sulfate increases the frequency of AMPA-mediated miniature excitatory postsynaptic currents in CA1 pyramidal neurons. This effect could not be observed in slices from rats older than postnatal day 5. The mechanism of action of pregnenolone sulfate involved a short-term increase in the probability of glutamate release, and this effect is likely mediated by presynaptic NMDA receptors containing the NR2D subunit, which is transiently expressed in the hippocampus. The increase in glutamate release triggered a long-term enhancement of AMPA receptor function that requires activation of postsynaptic NMDA receptors containing NR2B subunits. Importantly, synaptic strengthening could also be triggered by postsynaptic neuron depolarization, and an anti-pregnenolone sulfate antibody scavenger blocked this effect. This finding indicates that a pregnenolone sulfate-like neurosteroid is a previously unrecognized retrograde messenger that is released in an activity-dependent manner during development.


Trends in Neurosciences | 2012

Does moderate drinking harm the fetal brain? Insights from animal models

C. Fernando Valenzuela; Russell A. Morton; Marvin R. Diaz; Lauren Topper

Although public health campaigns advise pregnant women to abstain from ethanol, drinking during pregnancy is pervasive. Here, we highlight recent studies that have clearly demonstrated long-lasting neurobehavioral deficits in the offspring of laboratory animals exposed to moderate levels of ethanol during development. Alterations in learning, memory, motor coordination, social behavior, and stress responses were identified in these animals. Increased vulnerability to substance abuse was also demonstrated. These behavioral alterations have been associated with impairments in neurotransmitter systems, neuromodulators, and/or synaptic plasticity in several brain regions. With this review we hope to contribute to a better appreciation of the potential effects of developmental exposure to moderate ethanol levels, leading to better interventions aimed at relieving fetal alcohol spectrum disorders.


The Journal of Neuroscience | 2006

Expression and Function of SNAP-25 as a Universal SNARE Component in GABAergic Neurons

Lawrence C. R. Tafoya; Manuel Mameli; Teiko Miyashita; John F. Guzowski; C. Fernando Valenzuela; Michael C. Wilson

Intracellular vesicular trafficking and membrane fusion are important processes for nervous system development and for the function of neural circuits. Synaptosomal-associated protein 25 kDa (SNAP-25) is a component of neural soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core complexes that mediate the exocytotic release of neurotransmitters at chemical synapses. Previous results from mouse mutant models and pharmacological/neurotoxin blockades have demonstrated a critical role for SNAP-25-containing SNARE complexes in action potential (AP)-dependent release at cholinergic and glutamatergic synapses and for calcium-triggered catecholamine release from chromaffin cells. To examine whether SNAP-25 participates in the evoked release of other neurotransmitters, we investigated the expression and function of SNAP-25 in GABAergic terminals. Patch-clamp recordings in fetal Snap25-null mutant cortex demonstrated that ablation of SNAP-25 eliminated evoked GABAA receptor-mediated postsynaptic responses while leaving a low level of spontaneous AP-independent events intact, supporting the involvement of SNAP-25 in the regulated synaptic transmission of early developing GABAergic neurons. In hippocampal cell cultures of wild-type mice, punctate staining of SNAP-25 colocalized with both GABAergic and glutamatergic synaptic markers, whereas stimulus-evoked vesicular recycling was abolished at terminals of both transmitter phenotypes in Snap25−/− neurons. Moreover, immunohistochemistry and fluorescence in situ hybridization revealed coexpression of SNAP-25, VGAT (vesicular GABA transporter), and GAD65/67 (glutamic acid decarboxylase 65/67) in interneurons within several regions of the adult brain. Our results thus provide evidence that SNAP-25 is critical for evoked GABA release during development and is expressed in the presynaptic terminals of mature GABAergic neurons, consistent with its function as a component of a fundamental core SNARE complex required for stimulus-driven neurotransmission.


The Journal of Neuroscience | 2005

Developmentally Regulated Actions of Alcohol on Hippocampal Glutamatergic Transmission

Manuel Mameli; Paula A. Zamudio; Mario Carta; C. Fernando Valenzuela

Ethanol exposure during fetal development is a leading cause of learning disabilities. Studies suggest that it alters learning and memory by permanently damaging the hippocampus. It is generally assumed that this is mediated, in part, via alterations in glutamatergic transmission. Although NMDA receptors are presumed to be the most sensitive targets of ethanol in immature neurons, this issue has not been explored in the developing hippocampus. We performed whole-cell patch-clamp recordings in hippocampal slices from neonatal rats. Unexpectedly, we found that acute ethanol (10–50 mm) exposure depresses inward currents elicited by local application of exogenous AMPA, but not NMDA, in CA3 pyramidal neurons. These findings revealed a direct effect of ethanol on postsynaptic AMPA receptors. Ethanol significantly decreased the amplitude of both AMPA and NMDA receptor-mediated EPSCs evoked by electrical stimulation. This effect was associated with an increase in the paired-pulse ratio and a decrease in the frequency of miniature EPSCs driven by depolarization of axonal terminals. These findings demonstrate that ethanol also acts at the presynaptic level. ω-Conotoxin-GVIA occluded the effect of ethanol on NMDA EPSCs, indicating that ethanol decreases glutamate release via inhibition of N-type voltage-gated Ca2+ channels. In more mature rats, ethanol did not affect the probability of glutamate release or postsynaptic AMPA receptor-mediated currents, but it did inhibit NMDA-mediated currents. We conclude that the mechanism by which ethanol inhibits glutamatergic transmission is age dependent and challenge the view that postsynaptic NMDA receptors are the primary targets of ethanol early in development.


Behavioural Brain Research | 2010

Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: Relationship to structural plasticity and immediate early gene expression in frontal cortex

Derek A. Hamilton; Katherine G. Akers; James P. Rice; Travis E. Johnson; Felicha T. Candelaria-Cook; Levi I. Maes; Martina J. Rosenberg; C. Fernando Valenzuela; Daniel D. Savage

The goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals. Male ethanol-exposed rats also displayed profound increases in wrestling when social interaction was motivated by 24h of isolation. Baseline decreases in dendritic length and spine density in AID were observed in ethanol-exposed rats that were always housed with the same cage-mate. Modest experience-related decreases in dendritic length and spine density in AID were observed in saccharin-exposed rats housed with various cage-mates. In contrast, fetal-ethanol-exposed rats displayed experience-related increases in dendritic length in AID, and no experience-related changes in spine density. The only effect observed in Cg3 was a baseline increase in basilar dendritic length among male ethanol-exposed rats. Robust increases in activity-related IEG expression in AID (c-fos and Arc) and Cg3 (c-fos) were observed following social interaction in saccharin-exposed rats, however, activity-related increases in IEG expression were not observed in fetal-ethanol-exposed rats in either region. The results indicate that deficits in social behavior are among the long-lasting behavioral consequences of moderate ethanol exposure during brain development, and implicate AID, and to a lesser degree Cg3, in fetal-ethanol-related social behavior abnormalities.


Molecular Brain Research | 1995

Tyrosine kinase phosphorylation of GABAA receptors

C. Fernando Valenzuela; Tina K. Machu; Ruth M. McKernan; Paul J. Whiting; Barbara B. VanRenterghem; James L. McManaman; Susan J. Brozowski; Geoffrey B. Smith; Richard W. Olsen; R. Adron Harris

Phosphorylation of purified bovine brain GABAA receptors by the tyrosine kinase, pp60v-src was examined. pp60v-src phosphorylated two bands of 54-62 kDa and 48-51 kDa that migrated to approximately the same position as bands recognized by antisera against the beta 2 and gamma 2 GABAA receptor subunits, respectively. Bacterially expressed proteins containing the putative large cytoplasmic loops of the beta 1 and gamma 2L subunits were phosphorylated by pp60v-src, indicating that the phosphorylation sites are located in these subunit domains. The tyrosine kinase inhibitors, genistein and the tyrphostins B-42 and B-44, inhibited muscimol-stimulated 36Cl- uptake in mouse brain membrane vesicles (microsacs). magnitude of the tyrphostin B-44-induced inhibition of muscimol-stimulated 36Cl- uptake was significantly reduced in microsacs that were lysed and resealed under conditions that inhibit phosphorylation. GABA-gated Cl- currents were also inhibited by genistein and tyrphostin B-44 in Xenopus oocytes expressing alpha 1 beta 1 and alpha 1 beta 1 gamma 2L subunits. Consequently, protein tyrosine kinase-dependent phosphorylation appears to be another mechanism of regulating the function of GABAA receptors.


Brain Research | 2000

Block of hippocampal CAN channels by flufenamate.

L. Donald Partridge; C. Fernando Valenzuela

Ca(2+)-activated non-selective cation (CAN) channels are activated by cytoplasmic Ca(2+) and I(CAN) underlies many slow depolarizing processes in neurons including a putative role in excitotoxicity. CAN channels in many non-neuronal cells are blocked by non-steroidal antiinflammatory drugs that are derivatives of diphenylamine-2-carboxylate (DPC). The DPC derivative flufenamate (FFA) has a complex effect on certain neurons, whereby it blocks CAN channels and increases [Ca(2+)](i). We report here that FFA, but not the parent compound, DPC, blocks CAN channels in hippocampal CA1 neurons. As was the case in other neurons, the effects of FFA are complex and include a maintained rise in [Ca(2+)](i). Furthermore, the CAN channel blocking ability of FFA persists even when the channels have been potentiated by a Ca(2+)-dependent process. The use of a CAN channel-blocking drug is important for delineating CAN channel-dependent processes and may provide a basis for therapy for CAN channel-dependent events in ischemia.


PLOS ONE | 2011

Alcohol Exposure Decreases CREB Binding Protein Expression and Histone Acetylation in the Developing Cerebellum

Weixiang Guo; Erin Crossey; Li-Li Zhang; Stefano Zucca; Olivia L. George; C. Fernando Valenzuela; Xinyu Zhao

Background Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear. Methodology/Principal Findings We demonstrate that CREB binding protein (CBP) is widely expressed in granule and Purkinje neurons of the developing cerebellar cortex of naïve rats. We also show that exposure to ethanol during the 3rd trimester-equivalent of human pregnancy reduces CBP levels. CBP is a histone acetyltransferase, a component of the epigenetic mechanism controlling neuronal gene expression. We further demonstrate that the acetylation of both histone H3 and H4 is reduced in the cerebellum of ethanol- treated rats. Conclusions/Significance These findings indicate that ethanol exposure decreases the expression and function of CBP in the developing cerebellum. This effect of ethanol may be responsible for the motor coordination deficits that characterize fetal alcohol spectrum disorders.

Collaboration


Dive into the C. Fernando Valenzuela's collaboration.

Top Co-Authors

Avatar

Manuel Mameli

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Mario Carta

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Botta

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Marvin R. Diaz

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Adron Harris

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge