Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuel Mameli is active.

Publication


Featured researches published by Manuel Mameli.


Nature Neuroscience | 2009

Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc

Manuel Mameli; Briac Halbout; Cyril Creton; David Engblom; Jan Rodriguez Parkitna; Rainer Spanagel; Christian Lüscher

Addictive drugs hijack mechanisms of learning and memory that normally underlie reinforcement of natural rewards and induce synaptic plasticity of glutamatergic transmission in the mesolimbic dopamine (DA) system. In the ventral tegmental area (VTA), a single exposure to cocaine efficiently triggers NMDA receptor–dependent synaptic plasticity in DA neurons, whereas plasticity in the nucleus accumbens (NAc) occurs only after repeated injections. Whether these two forms of plasticity are independent or hierarchically organized remains unknown. We combined ex vivo electrophysiology in acute brain slices with behavioral assays modeling drug relapse in mice and found that the duration of the cocaine-evoked synaptic plasticity in the VTA is gated by mGluR1. Overriding mGluR1 in vivo made the potentiation in the VTA persistent. This led to synaptic plasticity in the NAc, which contributes to cocaine-seeking behavior after protracted withdrawal. Impaired mGluR1 function in vulnerable individuals could represent a first step in the recruitment of the neuronal network that underlies drug addiction.


Neuron | 2008

Glutamate receptors on dopamine neurons control the persistence of cocaine seeking

David Engblom; Ainhoa Bilbao; Carles Sanchis-Segura; Lionel Dahan; Stéphanie Perreau-Lenz; Bénédicte Balland; Jan Rodriguez Parkitna; Rafael Luján; Briac Halbout; Manuel Mameli; Rosanna Parlato; Rolf Sprengel; Christian Lüscher; Günther Schütz; Rainer Spanagel

Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.


Nature Neuroscience | 2011

Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area

Manuel Mameli; Camilla Bellone; Matthew T. C. Brown; Christian Lüscher

The manner in which drug-evoked synaptic plasticity affects reward circuits remains largely elusive. We found that cocaine reduced NMDA receptor excitatory postsynaptic currents and inserted GluA2–lacking AMPA receptors in dopamine neurons of mice. Consequently, a stimulation protocol pairing glutamate release with hyperpolarizing current injections further strengthened synapses after cocaine treatment. Our data suggest that early cocaine-evoked plasticity in the ventral tegmental area inverts the rules for activity-dependent plasticity, eventually leading to addictive behavior.


Cellular and Molecular Life Sciences | 2008

Mechanisms of synaptic depression triggered by metabotropic glutamate receptors

Camilla Bellone; Christian Lüscher; Manuel Mameli

Abstract.Glutamate, by activation of metabotropic receptors (mGluRs), can lead to a reduction of synaptic efficacy at many synapses. These forms of synaptic plasticity are referred to as long-term depression (mGluR-LTD). We will distinguish between mGluR-LTD induced by pre- or postsynaptic receptors and mGluR-LTD induced by the locus of the expression mechanism of the synaptic depression. We will also review recent evidence that mGluR-mediated responses themselves are subject to depression, which may constitute a form of metaplasticity.


PLOS ONE | 2010

Drug-Driven AMPA Receptor Redistribution Mimicked by Selective Dopamine Neuron Stimulation

Matthew T. C. Brown; Camilla Bellone; Manuel Mameli; Gwenaël Labouèbe; Christina Bocklisch; Bénédicte Balland; Lionel Dahan; Rafael Luján; Karl Deisseroth; Christian Lüscher

Background Addictive drugs have in common that they cause surges in dopamine (DA) concentration in the mesolimbic reward system and elicit synaptic plasticity in DA neurons of the ventral tegmental area (VTA). Cocaine for example drives insertion of GluA2-lacking AMPA receptors (AMPARs) at glutamatergic synapes in DA neurons. However it remains elusive which molecular target of cocaine drives such AMPAR redistribution and whether other addictive drugs (morphine and nicotine) cause similar changes through their effects on the mesolimbic DA system. Methodology / Principal Findings We used in vitro electrophysiological techniques in wild-type and transgenic mice to observe the modulation of excitatory inputs onto DA neurons by addictive drugs. To observe AMPAR redistribution, post-embedding immunohistochemistry for GluA2 AMPAR subunit was combined with electron microscopy. We also used a double-floxed AAV virus expressing channelrhodopsin together with a DAT Cre mouse line to selectively express ChR2 in VTA DA neurons. We find that in mice where the effect of cocaine on the dopamine transporter (DAT) is specifically blocked, AMPAR redistribution was absent following administration of the drug. Furthermore, addictive drugs known to increase dopamine levels cause a similar AMPAR redistribution. Finally, activating DA VTA neurons optogenetically is sufficient to drive insertion of GluA2-lacking AMPARs, mimicking the changes observed after a single injection of morphine, nicotine or cocaine. Conclusions / Significance We propose the mesolimbic dopamine system as a point of convergence at which addictive drugs can alter neural circuits. We also show that direct activation of DA neurons is sufficient to drive AMPAR redistribution, which may be a mechanism associated with early steps of non-substance related addictions.


Nature Neuroscience | 2011

In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA

Camilla Bellone; Manuel Mameli; Christian Lüscher

Maternal exposure to cocaine may perturb fetal development and affect synaptic maturation in the offspring. However, the molecular mechanism underlying such changes remains elusive. We focused on the postnatal maturation of glutamatergic transmission onto ventral tegmental area dopamine neurons in the mouse. We found that, during the first postnatal week, transmission was dominated by calcium-permeable AMPA receptors and GluN2B-containing NMDA receptors. Subsequently, mGluR1 receptors drove synaptic insertion of calcium-impermeable AMPA receptors and GluN2A-containing NMDAR. When pregnant mice were exposed to cocaine, this glutamate receptor switch was delayed in offspring as a result of a direct effect of cocaine on the fetal dopamine transporter and impaired mGluR1 function. Finally, positive modulation of mGluR1 in vivo was sufficient to rescue maturation. These data identify the molecular target through which in utero cocaine delays postnatal synaptic maturation, reveal the underlying expression mechanism of this impairment and propose a potential rescue strategy.


Nature Neuroscience | 2016

Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse

Frank J. Meye; Mariano Soiza-Reilly; Tamar Smit; Marco Diana; Martin K. Schwarz; Manuel Mameli

Cocaine withdrawal produces aversive states and vulnerability to relapse, hallmarks of addiction. The lateral habenula (LHb) encodes negative stimuli and contributes to aversive withdrawal symptoms. However, it remains unclear which inputs to LHb promote this and what the consequences are for relapse susceptibility. We report, using rabies-based retrolabeling and optogenetic mapping, that the entopeduncular nucleus (EPN, the mouse equivalent of the globus pallidus interna) projects to an LHb neuronal subset innervating aversion-encoding midbrain GABA neurons. EPN-to-LHb excitatory signaling is limited by GABAergic cotransmission. This inhibitory component decreases during cocaine withdrawal as a result of reduced presynaptic vesicular GABA transporter (VGAT). This shifts the EPN-to-LHb GABA/glutamate balance, disinhibiting EPN-driven LHb activity. Selective virally mediated VGAT overexpression at EPN-to-LHb terminals during withdrawal normalizes GABAergic neurotransmission. This intervention rescues cocaine-evoked aversive states and prevents stress-induced reinstatement, used to model relapse. This identifies diminished inhibitory transmission at EPN-to-LHb GABA/glutamate synapses as a mechanism contributing to the relapsing feature of addictive behavior.


Nature Communications | 2017

Limiting habenular hyperactivity ameliorates maternal separation-driven depressive-like symptoms

Anna Tchenio; Salvatore Lecca; Kristina Valentinova; Manuel Mameli

Early-life stress, including maternal separation (MS), increases the vulnerability to develop mood disorders later in life, but the underlying mechanisms remain elusive. We report that MS promotes depressive-like symptoms in mice at a mature stage of life. Along with this behavioral phenotype, MS drives reduction of GABAB-GIRK signaling and the subsequent lateral habenula (LHb) hyperexcitability—an anatomical substrate devoted to aversive encoding. Attenuating LHb hyperactivity using chemogenetic tools and deep-brain stimulation ameliorates MS depressive-like symptoms. This provides insights on mechanisms and strategies to alleviate stress-dependent affective behaviors.Early-life stress primes depression in adulthood. This study shows that early maternal separation leads to lateral habenula (LHb) hyperactivity and causes depressive-like phenotypes, the latter being reversible when LHb hyperactivity is reduced chemogenetically or through deep-brain stimulation.


European Journal of Neuroscience | 2018

Cocaine withdrawal reduces GABABR transmission at entopeduncular nucleus - lateral habenula synapses

Dorine Tan; Alvaro Nuno-Perez; Manuel Mameli; Frank J. Meye

Lateral habenula (LHb) hyperactivity plays a pivotal role in the emergence of negative emotional states, including those occurring during withdrawal from addictive drugs. We have previously implicated cocaine‐driven adaptations at synapses from the entopeduncular nucleus (EPN) to the LHb in this process. Specifically, ionotropic GABAA receptor (R)‐mediated neurotransmission at EPN‐to‐LHb synapses is reduced during cocaine withdrawal, due to impaired vesicle filling. Recent studies have shown that metabotropic GABABR signaling also controls LHb activity, although its role at EPN‐to‐LHb synapses during drug withdrawal is unknown. Here, we predicted that cocaine treatment would reduce GABABR‐mediated neurotransmission at EPN‐to‐LHb synapses. We chronically treated mice with saline or cocaine, prepared brain slices after two days of withdrawal and performed voltage‐clamp recordings from LHb neurons whilst optogenetically stimulating EPN terminals. Compared with controls, mice in cocaine withdrawal exhibited reduced GABAAR‐mediated input to LHb neurons, and a reduced occurrence of GABABR‐signaling at EPN‐to‐LHb synapses. We then assessed the underlying mechanism of this decrease. Application of GABABR agonist baclofen evoked similar postsynaptic responses in EPN‐innervated LHb neurons in saline‐ and cocaine‐treated mice. Release probability at EPN‐to‐LHb GABAergic synapses was also comparable between groups. However, incubating brain slices in glutamine to facilitate GABA vesicle filling, normalized GABABR‐currents at EPN‐to‐LHb synapses in cocaine‐treated mice. Overall, we show that during cocaine withdrawal, together with reduced GABAAR transmission, also GABABR‐mediated inhibitory signaling is diminished at EPN‐to‐LHb synapses, likely via the same presynaptic deficit. In concert, these alterations are predicted to contribute to the emergence of drug withdrawal symptoms, facilitating drug relapse.


Nature Neuroscience | 2017

Cocaine, cadherins and synaptic plasticity

Kristina Valentinova; Manuel Mameli

Addictive substances hijack the reward system partly via synaptic plasticity onto dopamine neurons. Cadherins may contribute to cocaine-evoked adaptations, supporting the notion that drug addiction is a synaptic disease.

Collaboration


Dive into the Manuel Mameli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge