C. G. Grupen
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. G. Grupen.
Biology of Reproduction | 2002
Andrew C. Boquest; C. G. Grupen; Sharon J. Harrison; Stephen M. McIlfatrick; Rodney J. Ashman; Anthony J. F. d'Apice; Mark B. Nottle
Abstract Somatic cell nuclear transfer was used to produce live piglets from cultured fetal fibroblast cells. This was achieved by exposing donor cell nuclei to oocyte cytoplasm for approximately 3 h before activation by chemical means. Initially, an experiment was performed to optimize a cell fusion system that prevented concurrent activation in the majority of recipient cytoplasts. Cultured fibroblast cells were fused in medium with or without calcium into enucleated oocytes flushed from superovulated gilts. Cybrids fused in the presence of calcium cleaved at a significantly (P < 0.05) greater rate (69%, 37 out of 54) after 2 days of culture compared with those fused without calcium (10%, 7 out of 73), suggesting that calcium-free conditions are needed to avoid activation in the majority of recipient cytoplasts during fusion. In the second experiment, cybrids fused in calcium-free medium were activated approximately 3 h later with ionomycin, followed by incubation in 6-dimethylaminopurine to determine development in vitro. Following 2 days of culture, cleavage rates of chemically activated and unactivated cybrids (fusion without activation control) were 93% (100 out of 108) and 7% (2 out of 27), respectively. After an additional 5 days of culture, activated cloned embryos formed blastocysts at a rate of 23% (25 out of 108) with an average inner cell mass and trophectoderm cell number of 10 (range, 3 to 38) and 31 (range, 16 to 58), respectively. In the third experiment, activated nuclear transfer embryos were transferred to the uteri of synchronized recipients after 3 days of culture to assess their development in vivo. Of 10 recipients receiving an average of 80 cleaved embryos (range, 40 to 107), 5 became pregnant (50%) as determined by ultrasound between Day 25 and Day 35 of gestation. Of the five pregnant recipients, two subsequently farrowed one piglet per litter originating from two different cell culture lines. In this study, efficient reprogramming of porcine donor nuclei by fusing cells in the absence of calcium followed by chemical activation of recipient cytoplasts was reflected in high rates of development to blastocyst and pregnancy initiation leading to full term development.
Reproduction, Fertility and Development | 2007
Melanie A. Bagg; Mark B. Nottle; David T. Armstrong; C. G. Grupen
The present study compared the distribution and steroid composition of 3-, 4- and 5-8-mm follicles on the surface of prepubertal and adult ovaries, and determined the relationship between follicle size and developmental competence of oocytes following parthenogenetic activation. The effect of 1 mm dibutyryl cAMP (dbcAMP) for the first 22 h of in vitro maturation (IVM) on the embryo development of prepubertal oocytes from the three follicle size cohorts was also determined. Compared with adult, prepubertal ovaries contained a higher proportion of 3-mm follicles (46 v. 72%, respectively), but a lower proportion of 4-mm (33 v. 22%, respectively) and 5-8-mm follicles (21 v. 6%, respectively). Adult follicular fluid (FF) contained 11-fold higher levels of progesterone (P4) than prepubertal FF, with similar levels observed between all adult follicle sizes. In prepubertal FF, the P4 concentration increased with follicle size from 3 to 4 to 5-8 mm. Rates of blastocyst development following parthenogenetic activation of adult oocytes from all three follicles sizes were similar (approximately 55%), whereas rates from prepubertal oocytes increased with increasing follicle size from 3 (17%) to 4 (36%) to 5-8 mm (55%). Treatment with dbcAMP for the first 22 h of IVM led to a 1.5-fold increase in the rate of blastocyst development for prepubertal oocytes from 3-mm follicles, but had no effect on prepubertal oocytes from the 4 and 5-8 mm classes. Mean blastocyst cell number increased with follicle size in prepubertal ovaries and was similar for all follicle sizes in adult ovaries. The present study demonstrates that the low efficiency of in vitro embryo production observed using prepubertal compared with adult pig oocytes is due to a greater proportion of 3-mm follicles on prepubertal ovaries, which contain oocytes of inferior developmental competence.
Journal of Proteomics | 2013
Xavier Druart; J.P. Rickard; Swetlana Mactier; Philippa L. Kohnke; C.M. Kershaw-Young; R. Bathgate; Z. Gibb; Ben Crossett; Guillaume Tsikis; Valérie Labas; Grégoire Harichaux; C. G. Grupen; S.P. de Graaf
UNLABELLED Seminal plasma contains a large protein component which has been implicated in the function, transit and survival of spermatozoa within the female reproductive tract. However, the identity of the majority of these proteins remains unknown and a direct comparison between the major domestic mammalian species has yet to be made. As such, the present study characterized and compared the seminal plasma proteomes of cattle, horse, sheep, pig, goat, camel and alpaca. GeLC-MS/MS and shotgun proteomic analysis by 2D-LC-MS/MS identified a total of 302 proteins in the seminal plasma of the chosen mammalian species. Nucleobindin 1 and RSVP14, a member of the BSP (binder of sperm protein) family, were identified in all species. Beta nerve growth factor (bNGF), previously identified as an ovulation inducing factor in alpacas and llamas, was identified in this study in alpaca and camel (induced ovulators), cattle, sheep and horse (spontaneous ovulators) seminal plasma. These findings indicate that while the mammalian species studied have common ancestry as ungulates, their seminal plasma is divergent in protein composition, which may explain variation in reproductive capacity and function. The identification of major specific proteins within seminal plasma facilitates future investigation of the role of each protein in mammalian reproduction. BIOLOGICAL SIGNIFICANCE This proteomic study is the first study to compare the protein composition of seminal plasma from seven mammalian species including two camelid species. Beta nerve growth factor, previously described as the ovulation inducing factor in camelids is shown to be the major protein in alpaca and camel seminal plasma and also present in small amounts in bull, ram, and horse seminal plasma.
Theriogenology | 2014
C. G. Grupen
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology.
Molecular Reproduction and Development | 1996
Hiroshi Nagashima; C. G. Grupen; Rodney J. Ashman; Mark B. Nottle
In vivo and in vitro matured porcine oocytes were fertilized by subzonal sperm injection (SUZI), and their subsequent development in vitro was examined to determine whether ooplasmic incompetence is the major cause of limited developmental ability of in vitro matured/fertilized porcine oocytes (Experiment 1). There was no significant difference in rates of fertilization (61% vs. 70%), monospermy (37% vs. 45%), and male pronuclear formation (77% vs. 61%) between in vivo and in vitro matured oocytes. Blastocyst formation rate was significantly lower for in vitro matured oocytes (11% vs. 42%; P < 0.001). Forty‐six percent of in vivo matured oocytes cleaved to the 2‐4 cell stage by 24 hr in culture after SUZI, compared with 3% of in vitro matured oocytes (P < 0.01). In experiment 2, in vitro development of in vitro matured oocytes with evenly and unevenly granulated cytoplasm were compared after SUZI to examine whether developmentally competent in vitro matured oocytes can be identified on the basis of morphological appearance. Most of the blastocysts obtained developed from oocytes with unevenly granulated cytoplasm (7/56 vs. 1/45; P > 0.05). Experiment 3 revealed that the proportion of oocytes with evenly granulated cytoplasm was originally low (11%) in the population of oocytes used for in vitro maturation, and it increased approximately 3‐fold (36%; P < 0.001) after maturation. These results suggest that ooplasmic incompetence in porcine in vitro matured oocytes is the major cause of their limited developmental competence. Cytoplasmic maturation measured by male pronucleus formation does not directly reflect developmental competence of the oocytes. It was also shown that evenness of granulation of the cytoplasm is not a useful morphological indicator of developmental competence.
Transgenic Research | 2001
Mark B. Nottle; K.A. Haskard; Paul J. Verma; Z.T Du; C. G. Grupen; Stephen M. McIlfatrick; Rodney J. Ashman; Sharon J. Harrison; Helen Barlow; Peter L. Wigley; Ian Lyons; Peter J. Cowan; Robert J. Crawford; Paul Tolstoshev; Martin J. Pearse; Allan J. Robins; Anthony J. F. d'Apice
A retrospective analysis of transgenesis rates obtained in seven pronuclear microinjection programs was undertaken to determine if a relationship existed between the amount of DNA injected and transgenesis rates in the pig. Logistic regression analysis showed that as the concentration of DNA injected increased from 1 to 10 ng/μl, the number of transgenics when expressed as a proportion of the number liveborn (integration rate) increased from 4% to an average of 26%. A similar relationship was found when the number of molecules of DNA injected per picolitre was analysed. No evidence was obtained to suggest either parameter influenced integration rate in mice when the same constructs were injected. The number of transgenics liveborn when expressed as a proportion of ova injected (efficiency rate), increased as DNA concentration increased up to 7.5 ng/μl and then decreased at 10 ng/μl for both species suggesting that at this concentration DNA (or possible contaminants) may have influenced embryo survival. The relationship between efficiency and the number of molecules injected per picolitre was complex suggesting that the concentration at which DNA was injected was a better determinant of integration and efficiency rates. In conclusion, the present study suggests that transgenes need to be injected at concentrations of between 5 and 10 ng/μl to maximise integration and efficiency rates in pigs.
Reproduction, Fertility and Development | 2006
C. G. Grupen; Maggie Fung; David T. Armstrong
Inappropriate coordination of oocyte nuclear and cytoplasmic maturation is thought to contribute to the poor efficiency of embryo production in vitro. With the aim of improving this coordination, the effects of milrinone, an inhibitor of type 3 phosphodiesterases, and butyrolactone-I, a selective inhibitor of cdc2 kinases, on porcine oocyte maturation were investigated. Oocytes recovered from slaughterhouse-derived ovaries of prepubertal animals were treated with the inhibitors for 24 h. At concentrations of 50 and 250 microm, milrinone reversibly inhibited meiotic progression in 57% and 71% of oocytes, respectively. The presence or absence of milrinone in the medium used to wash oocytes for 30 min did not alter the inhibitory effect of the 24 h treatment. At concentrations of 25 and 50 microm, butyrolactone-I inhibited meiotic progression in 61% and 66% of oocytes, respectively, but the effect was not fully reversible in the absence of follicle-stimulating hormone (FSH). The presence of FSH during the butyrolactone-I treatment period increased the ability of oocytes to subsequently complete meiosis at 44 h without changing the inhibitory effect at 24 h. Following in vitro fertilisation at 44 and 50 h, treatment with butyrolactone-I and milrinone, alone or in combination, did not alter embryo cleavage rate, blastocyst formation rate or blastocyst cell number. Despite the different actions of milrinone and butyrolactone-I, the present study demonstrates that these reagents inhibit meiotic progression to a similar extent in the presence of FSH while maintaining developmental competence in porcine oocytes.
Reproduction, Fertility and Development | 2010
C. G. Grupen; David T. Armstrong
The objective of the present study was to determine the temporal effects of sow follicular fluid (FF) in vitro on cumulus cell viability and function, as well as oocyte nuclear and cytoplasmic maturation. Cumulus-oocyte complexes (COCs) recovered from the ovaries of prepubertal pigs were matured in medium with (+FF) or without (-FF) follicular fluid for the first 22 h of IVM. At 22 h of IVM, each group of COCs was then transferred to medium with or without FF and matured for another 22 h, forming four treatment groups (-FF/-FF, -FF/+FF, +FF/-FF and +FF/+FF). The concentration of progesterone in spent IVM medium and the incidence of cumulus cell apoptosis in individual COCs were determined at 22 and 44 h of IVM. Cumulus expansion was also recorded at 44 h of IVM. Finally, the ability of oocytes to complete meiosis to the MII stage and form blastocysts after IVF and embryo culture was assessed. Maturation with FF for part or the whole of IVM increased cumulus expansion and progesterone production and decreased the incidence of cumulus cell apoptosis compared with the -FF/-FF group (P < 0.05). The changes were greatest for the +FF/+FF group and intermediate for the -FF/+FF and +FF/-FF groups. Regression analysis revealed a negative association between cumulus cell progesterone production and the incidence of cumulus cell apoptosis (P < 0.001). Meiotic maturation was enhanced when FF was present during the first half of IVM. Oocytes matured in the presence of FF during the first and/or second half of IVM displayed an increased ability to form blastocysts compared with the -FF/-FF group (P < 0.05). The extent of the increase was similar for all FF-supplemented groups. The results show that FF exerts several beneficial effects at different times during IVM and suggest that a major role of FF is to provide protection from oxidative stress. We propose that the incidence of cumulus cell apoptosis in COCs must be kept below a certain threshold to ensure adequate functionality, including steroidogenic activity, is maintained for the acquisition of oocyte developmental competence.
Theriogenology | 1994
Hiroshi Nagashima; N. Kashiwazaki; Rodney J. Ashman; C. G. Grupen; R.F. Seamark; Mark B. Nottle
Abstract The conditions and protocols recently developed for the cryopreservation of porcine embryos are described and analysed with the aim of developing a standard protocol. A new approach to cryopreservation using delipidized embryos is discussed.
Reproduction, Fertility and Development | 2012
Michael J. Bertoldo; P. K. Holyoake; G. Evans; C. G. Grupen
The modern domestic sow exhibits a period of impaired reproductive performance known as seasonal infertility during the late summer and early autumn months. A reduction in farrowing rate due to pregnancy loss is the most economically significant manifestation of this phenomenon. Presently, little is known of the aetiology of seasonal pregnancy loss in the pig. Recent findings represent a major advancement in the understanding of sow reproductive physiology and implicate poor oocyte developmental competence as a contributing factor to pregnancy loss during the seasonal infertility period. It has also been demonstrated that ovarian activity is depressed during the seasonal infertility period. The reduction in oocyte quality is associated with decreased levels of progesterone in follicular fluid during final oocyte maturation in vivo. The recent identification of sow-specific risk factors, such as parity for late pregnancy loss, should improve breeding herd efficiency by allowing producers to tailor management interventions and/or culling protocols that target animals identified as having a greater risk of late pregnancy loss during the seasonal infertility period.