Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark B. Nottle is active.

Publication


Featured researches published by Mark B. Nottle.


Transplantation | 1996

The alpha-1,3-galactosyltransferase knockout mouse. Implications for xenotransplantation.

Rick G. Tearle; Margaret J. Tange; Zara L. Zannettino; Marina Katerelos; Trixie A. Shinkel; Bryce J. W. van Denderen; Andrew Lonie; Ian Lyons; Mark B. Nottle; Timothy Cox; Christiane Becker; Anita M. Peura; Peter L. Wigley; Robert J. Crawford; Allan J. Robins; Martin J. Pearse; Anthony J. F. d'Apice

Organ xenografts in discordant combinations such as pig-to-man undergo hyperacute rejection due to the presence of naturally occurring human anti-pig xenoantibodies. The galactose alpha(1,3)-galactose epitope on glycolipids and glycoproteins is the major porcine xenoantigen recognized by these xenoantibodies. This epitope is formed by alpha(1,3)-galactosyltransferase, which is present in all mammals except man, apes, and Old World monkeys. We have generated mice lacking this major xenoantigen by inactivating the alpha(1,3)-galactosyltransferase gene. These mice are viable and have normal organs but develop cataracts. Substantially less xenoantibody from human serum binds to cells and tissues of these mice compared with normal mice. Similarly, there is less activation of human complement on cells from mice lacking the galactose alpha(1,3)-galactose epitope. These mice confirm the importance of the galactose alpha(1,3)-galactose epitope in human xenoreactivity and the logic of continuing efforts to generate pigs that lack this epitope as a source of donor organs.


Transplantation | 2000

Renal xenografts from triple-transgenic pigs are not hyperacutely rejected but cause coagulopathy in non-immunosuppressed baboons.

Peter J. Cowan; Atousa Aminian; Helen Barlow; A. A. Brown; C.G Chen; Nella Fisicaro; David M. A. Francis; David J. Goodman; Wenruo Han; Margarita Kurek; Mark B. Nottle; Martin J. Pearse; Evelyn Salvaris; Trixie A. Shinkel; G. V. Stainsby; A. B. Stewart; Anthony J. F. d'Apice

BACKGROUND The genetic modification of pigs is a powerful strategy that may ultimately enable successful xenotransplantation of porcine organs into humans. METHODS Transgenic pigs were produced by microinjection of gene constructs for human complement regulatory proteins CD55 and CD59 and the enzyme alpha1,2-fucosyltransferase (H-transferase, HT), which reduces expression of the major xenoepitope galactose-alpha1,3-galactose (alphaGal). Kidneys from CD55/HT and CD55/CD59/HT transgenic pigs were transplanted into nephrectomised, nonimmunosuppressed adult baboons. RESULTS In several lines of transgenic pigs, CD55 and CD59 were expressed strongly in all tissues examined, whereas HT expression was relatively weak and did not significantly reduce alphaGal. Control nontransgenic kidneys (n=4) grafted into baboons were hyperacutely rejected within 1 hr. In contrast, kidneys from CD55/HT pigs (n=2) were rejected after 30 hr, although kidneys from CD55/CD59/HT pigs (n=6) maintained function for up to 5 days. In the latter grafts, infiltration by macrophages, T cells, and B cells was observed at days 3 and 5 posttransplantation. The recipients developed thrombocytopenia and abnormalities in coagulation, manifested in increased clotting times and an elevation in the plasma level of the fibrin degradation product D-dimer, within 2 days of transplantation. Treatment with low molecular weight heparin prevented profound thrombocytopenia but not the other aspects of coagulopathy. CONCLUSIONS Strong expression of CD55 and CD59 completely protected porcine kidneys from hyperacute rejection and allowed a detailed analysis of xenograft rejection in the absence of immunosuppression. Coagulopathy appears to be a common feature of pig-to-baboon renal transplantation and represents yet another major barrier to its clinical application.


Biology of Reproduction | 2002

Production of Cloned Pigs from Cultured Fetal Fibroblast Cells

Andrew C. Boquest; C. G. Grupen; Sharon J. Harrison; Stephen M. McIlfatrick; Rodney J. Ashman; Anthony J. F. d'Apice; Mark B. Nottle

Abstract Somatic cell nuclear transfer was used to produce live piglets from cultured fetal fibroblast cells. This was achieved by exposing donor cell nuclei to oocyte cytoplasm for approximately 3 h before activation by chemical means. Initially, an experiment was performed to optimize a cell fusion system that prevented concurrent activation in the majority of recipient cytoplasts. Cultured fibroblast cells were fused in medium with or without calcium into enucleated oocytes flushed from superovulated gilts. Cybrids fused in the presence of calcium cleaved at a significantly (P < 0.05) greater rate (69%, 37 out of 54) after 2 days of culture compared with those fused without calcium (10%, 7 out of 73), suggesting that calcium-free conditions are needed to avoid activation in the majority of recipient cytoplasts during fusion. In the second experiment, cybrids fused in calcium-free medium were activated approximately 3 h later with ionomycin, followed by incubation in 6-dimethylaminopurine to determine development in vitro. Following 2 days of culture, cleavage rates of chemically activated and unactivated cybrids (fusion without activation control) were 93% (100 out of 108) and 7% (2 out of 27), respectively. After an additional 5 days of culture, activated cloned embryos formed blastocysts at a rate of 23% (25 out of 108) with an average inner cell mass and trophectoderm cell number of 10 (range, 3 to 38) and 31 (range, 16 to 58), respectively. In the third experiment, activated nuclear transfer embryos were transferred to the uteri of synchronized recipients after 3 days of culture to assess their development in vivo. Of 10 recipients receiving an average of 80 cleaved embryos (range, 40 to 107), 5 became pregnant (50%) as determined by ultrasound between Day 25 and Day 35 of gestation. Of the five pregnant recipients, two subsequently farrowed one piglet per litter originating from two different cell culture lines. In this study, efficient reprogramming of porcine donor nuclei by fusing cells in the absence of calcium followed by chemical activation of recipient cytoplasts was reflected in high rates of development to blastocyst and pregnancy initiation leading to full term development.


Xenotransplantation | 2007

Production of homozygous α-1,3-galactosyltransferase knockout pigs by breeding and somatic cell nuclear transfer

Mark B. Nottle; L. F. S. Beebe; Sharon J. Harrison; Stephen M. McIlfatrick; Rodney J. Ashman; Phillip J. O’Connell; Evelyn Salvaris; Nella Fisicaro; Sandra Pommey; Peter J. Cowan; Anthony J. F. D’Apice

Abstract:  We report here our experience regarding the production of double or homozygous Gal knockout (Gal KO) pigs by breeding and somatic cell nuclear transfer (SCNT). Large White × Landrace female heterozygous Gal KO founders produced using SCNT were mated with Hampshire or Duroc males to produce a F1 generation. F1 heterozygous pigs were then bred to half‐sibs to produce a F2 generation which contained Gal KO pigs. To determine the viability of mating Gal KO pigs with each other, one female F2 Gal KO pig was bred to a half‐sib and subsequently a full‐sib Gal KO. F1 and F2 heterozygous females were also mated to F2 Gal KO males. All three types of matings produced Gal KO pigs. To produce Gal KO pigs by SCNT, heterozygous F1s were bred together and F2 fetuses were harvested to establish primary cultures of Gal KO fetal fibroblasts. Gal KO embryos were transferred to five recipients, one of which became pregnant and had a litter of four piglets. Together our results demonstrate that Gal KO pigs can be produced by breeding with each other and by SCNT using Gal KO fetal fibroblasts.


Reproduction, Fertility and Development | 2007

Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs

Melanie A. Bagg; Mark B. Nottle; David T. Armstrong; C. G. Grupen

The present study compared the distribution and steroid composition of 3-, 4- and 5-8-mm follicles on the surface of prepubertal and adult ovaries, and determined the relationship between follicle size and developmental competence of oocytes following parthenogenetic activation. The effect of 1 mm dibutyryl cAMP (dbcAMP) for the first 22 h of in vitro maturation (IVM) on the embryo development of prepubertal oocytes from the three follicle size cohorts was also determined. Compared with adult, prepubertal ovaries contained a higher proportion of 3-mm follicles (46 v. 72%, respectively), but a lower proportion of 4-mm (33 v. 22%, respectively) and 5-8-mm follicles (21 v. 6%, respectively). Adult follicular fluid (FF) contained 11-fold higher levels of progesterone (P4) than prepubertal FF, with similar levels observed between all adult follicle sizes. In prepubertal FF, the P4 concentration increased with follicle size from 3 to 4 to 5-8 mm. Rates of blastocyst development following parthenogenetic activation of adult oocytes from all three follicles sizes were similar (approximately 55%), whereas rates from prepubertal oocytes increased with increasing follicle size from 3 (17%) to 4 (36%) to 5-8 mm (55%). Treatment with dbcAMP for the first 22 h of IVM led to a 1.5-fold increase in the rate of blastocyst development for prepubertal oocytes from 3-mm follicles, but had no effect on prepubertal oocytes from the 4 and 5-8 mm classes. Mean blastocyst cell number increased with follicle size in prepubertal ovaries and was similar for all follicle sizes in adult ovaries. The present study demonstrates that the low efficiency of in vitro embryo production observed using prepubertal compared with adult pig oocytes is due to a greater proportion of 3-mm follicles on prepubertal ovaries, which contain oocytes of inferior developmental competence.


American Journal of Transplantation | 2014

Control of IBMIR in neonatal porcine islet xenotransplantation in baboons.

Wayne J. Hawthorne; Evelyn Salvaris; P. Phillips; J. Hawkes; D. Liuwantara; H Burns; Helen Barlow; A. B. Stewart; S B Peirce; Min Hu; Andrew M. Lew; Simon C. Robson; Mark B. Nottle; Anthony J. F. d'Apice; Philip J. O'Connell; Peter J. Cowan

The instant blood‐mediated inflammatory reaction (IBMIR) is a major obstacle to the engraftment of intraportal pig islet xenografts in primates. Higher expression of the galactose‐α1,3‐galactose (αGal) xenoantigen on neonatal islet cell clusters (NICC) than on adult pig islets may provoke a stronger reaction, but this has not been tested in the baboon model. Here, we report that WT pig NICC xenografts triggered profound IBMIR in baboons, with intravascular clotting and graft destruction occurring within hours, which was not prevented by anti‐thrombin treatment. In contrast, IBMIR was minimal when recipients were immunosuppressed with a clinically relevant protocol and transplanted with NICC from αGal‐deficient pigs transgenic for the human complement regulators CD55 and CD59. These genetically modified (GM) NICC were less susceptible to humoral injury in vitro than WT NICC, inducing significantly less complement activation and thrombin generation when incubated with baboon platelet‐poor plasma. Recipients of GM NICC developed a variable anti‐pig antibody response, and examination of the grafts 1 month after transplant revealed significant cell‐mediated rejection, although scattered insulin‐positive cells were still present. Our results indicate that IBMIR can be attenuated in this model, but long‐term graft survival may require more effective immunosuppression or further donor genetic modification.


Cellular Reprogramming | 2010

In Vitro and In Vivo Characterization of Putative Porcine Embryonic Stem Cells

Ivan Vassiliev; Svetlana Vassilieva; Luke F.S. Beebe; Sharon J. Harrison; Stephen M. McIlfatrick; Mark B. Nottle

We have developed a new method for the isolation of porcine embryonic stem cells (ESCs) from in vivo-derived and in vitro-produced embryos. Here we describe the isolation and characterization of several ESC lines established using this method. Cells from these lines were passaged up to 14 times, during which they were repeatedly cryopreserved. During this time, ESCs maintained their morphology and continued to express Oct 4, Nanog, and SSEA1. These cells formed embryoid bodies in suspension culture, and could be directed to differentiate into various lineages representative of all three germ layers in vitro. When injected into blastocysts these cells localized in the inner cell mass of blastocysts. To examine their pluripotency further, cells were injected into host blastocysts and transferred to recipient animals. Of the six transfers undertaken, one recipient became pregnant and gave birth to a litter of one male and three female piglets. Microsatellite analysis of DNA extracted from the tail tissue of these piglets indicated that two female piglets were chimaeric.


Xenotransplantation | 2013

First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses

Filippo Naso; Alessandro Gandaglia; Tomaso Bottio; Vincenzo Tarzia; Mark B. Nottle; Anthony J. F. d'Apice; Peter J. Cowan; Emmanuele Cozzi; Cesare Galli; Irina Lagutina; Giovanna Lazzari; Laura Iop; Michele Spina; Gino Gerosa

Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti‐αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out.


Molecular Reproduction and Development | 1996

Developmental competence of in vivo and in vitro matured porcine oocytes after subzonal sperm injection

Hiroshi Nagashima; C. G. Grupen; Rodney J. Ashman; Mark B. Nottle

In vivo and in vitro matured porcine oocytes were fertilized by subzonal sperm injection (SUZI), and their subsequent development in vitro was examined to determine whether ooplasmic incompetence is the major cause of limited developmental ability of in vitro matured/fertilized porcine oocytes (Experiment 1). There was no significant difference in rates of fertilization (61% vs. 70%), monospermy (37% vs. 45%), and male pronuclear formation (77% vs. 61%) between in vivo and in vitro matured oocytes. Blastocyst formation rate was significantly lower for in vitro matured oocytes (11% vs. 42%; P < 0.001). Forty‐six percent of in vivo matured oocytes cleaved to the 2‐4 cell stage by 24 hr in culture after SUZI, compared with 3% of in vitro matured oocytes (P < 0.01). In experiment 2, in vitro development of in vitro matured oocytes with evenly and unevenly granulated cytoplasm were compared after SUZI to examine whether developmentally competent in vitro matured oocytes can be identified on the basis of morphological appearance. Most of the blastocysts obtained developed from oocytes with unevenly granulated cytoplasm (7/56 vs. 1/45; P > 0.05). Experiment 3 revealed that the proportion of oocytes with evenly granulated cytoplasm was originally low (11%) in the population of oocytes used for in vitro maturation, and it increased approximately 3‐fold (36%; P < 0.001) after maturation. These results suggest that ooplasmic incompetence in porcine in vitro matured oocytes is the major cause of their limited developmental competence. Cytoplasmic maturation measured by male pronucleus formation does not directly reflect developmental competence of the oocytes. It was also shown that evenness of granulation of the cytoplasm is not a useful morphological indicator of developmental competence.


Transgenic Research | 2002

Efficient Generation of α(1,3) Galactosyltransferase Knockout Porcine Fetal Fibroblasts for Nuclear Transfer

Sharon J. Harrison; Angelo Guidolin; Renate Faast; Lesley Crocker; Chris Giannakis; Anthony J. F. d'Apice; Mark B. Nottle; Ian Lyons

Pigs are currently considered the most likely source of organs for human xenotransplantation because of anatomical and physiological similarities to humans, and the relative ease with which they can be bred in large numbers. A severe form of rejection known as hyperacute rejection has been the major barrier to the use of xenografts. Generating transgenic pigs for organ transplantation is likely to involve precise genetic manipulation to ablate the α(1,3) galactosyltransferase (galT) gene. In contrast to the mouse, homologous recombination in livestock species to ablate genes is hampered by the inability to isolate functional embryonic stem cells. However, nuclear transfer using genetically targeted cultured somatic cells provides an alternative means to producing pigs deficient for galT. In this study we successfully produced galT+/− somatic porcine fetal fibroblasts using two approaches; positive negative selection (PNS) using an isogenic targeting construct, and with a promoterless vector using non-isogenic DNA.

Collaboration


Dive into the Mark B. Nottle's collaboration.

Top Co-Authors

Avatar

Peter J. Cowan

St. Vincent's Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge