Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Gaquiere is active.

Publication


Featured researches published by C. Gaquiere.


international electron devices meeting | 2006

Can InAlN/GaN be an alternative to high power / high temperature AlGaN/GaN devices?

F. Medjdoub; J.-F. Carlin; M. Gonschorek; E. Feltin; M. A. Py; D. Ducatteau; C. Gaquiere; N. Grandjean; E. Kohn

The performance of novel AlInN/GaN HEMTs for high power / high temperature applications is discussed. With 0.25 mum gate length the highest maximum output current density of more than 2 A/mm at room temperature and more than 3 A/mm at 77 K have been obtained even with sapphire substrates. Cut-off frequencies were fT = 50 GHz and fMAX = 60 GHz for 0.15 mum gate length without T-gate. Pulsed measurements reveal a less unstable surface than in the case of AlGaN/GaN structures. Although limited by buffer layer leakage, with field plates a maximum drain bias of 100 V has been reached with these devices. The high chemical stability of this unstrained heterostructure and its surface has been demonstrated with successful operation at 1000 degC in vacuum


IEEE Electron Device Letters | 1998

InAlAs/InGaAs metamorphic HEMT with high current density and high breakdown voltage

M. Zaknoune; B. Bonte; C. Gaquiere; Y. Cordier; Y. Druelle; D. Theron; Y. Crosnier

An In/sub 0.3/Al/sub 0.7/As/In/sub 0.3/Ga/sub 0.7/As metamorphic power high electron mobility transistor (HEMT) grown on GaAs has been developed. This structure with 30% indium content presents several advantages over P-HEMT on GaAs and LM-HEMT on InP. A 0.15-/spl mu/m gate length device with a single /spl delta/ doping exhibits a state-of-the-art current gain cut-off frequency F/sub t/ value of 125 GHz at V/sub ds/=1.5 V, an extrinsic transconductance of 650 mS/mm and a current density of 750 mA/mm associated to a high breakdown voltage of -13 V, power measurements performed at 60 GHz demonstrate a maximum output power of 240 mW/mm with 6.4-dB power gain and a power added efficiency (PAE) of 25%. These are the first power results ever reported for any metamorphic HEMT.


IEEE Electron Device Letters | 2010

AlInN/AlN/GaN HEMT Technology on SiC With 10-W/mm and 50% PAE at 10 GHz

N. Sarazin; E. Morvan; M.-A. di Forte Poisson; M. Oualli; C. Gaquiere; O. Jardel; O. Drisse; M. Tordjman; M. Magis; Sylvain Delage

High-frequency high-electron-mobility transistors (HEMTs) were fabricated on AlInN/AlN/GaN heterostructures grown by low-pressure metal-organic chemical vapor deposition on a SiC substrate. The results presented in this letter confirm the high performance that is reachable by AlInN-based technology with an output power of 10.3 W/mm and a power-added efficiency of 51% at 10 GHz with a gate length of 0.25 ¿m. A good extrinsic transconductance value that is greater than 450 mS/mm and exceeding AlGaN/GaN HEMT results was also measured on these transistors. To our knowledge, these results are the best power results published on AlInN/GaN HEMTs. These good results were attributed to optimized heterostructure properties associated with low-resistance ohmic contacts and an effective passivation layer minimizing drain current slump in high-frequency operations.


Journal of Applied Physics | 2010

AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources

A. El Fatimy; N. Dyakonova; Yahya M. Meziani; Taiichi Otsuji; W. Knap; S. Vandenbrouk; K. Madjour; D. Theron; C. Gaquiere; M.-A. Poisson; S. Delage; P. Prystawko; C. Skierbiszewski

We report on room temperature terahertz generation by a submicron size AlGaN/GaN-based high electron mobility transistors. The emission peak is found to be tunable by the gate voltage between 0.75 and 2.1 THz. Radiation frequencies correspond to the lowest fundamental plasma mode in the gated region of the transistor channel. Emission appears at a certain drain bias in a thresholdlike manner. Observed emission is interpreted as a result of Dyakonov–Shur plasma wave instability in the gated two-dimensional electron gas.


IEEE Electron Device Letters | 2006

Output power density of 5.1/mm at 18 GHz with an AlGaN/GaN HEMT on Si substrate

D. Ducatteau; A. Minko; V. Hoel; E. Morvan; E. Delos; B. Grimbert; H. Lahreche; Philippe Bove; C. Gaquiere; J.C. De Jaeger; Sylvain Delage

Microwave frequency capabilities of AlGaN/GaN high electron mobility transistors (HEMTs) on high resistive silicon (111) substrate for power applications are demonstrated in this letter. A maximum dc current density of 1 A/mm and an extrinsic current gain cutoff frequency (F/sub T/) of 50 GHz are achieved for a 0.25 /spl mu/m gate length device. Pulsed and large signal measurements show the good quality of the epilayer and the device processing. The trapping phenomena are minimized and consequently an output power density of 5.1 W/mm is reached at 18 GHz on a 2/spl times/50/spl times/0.25 /spl mu/m/sup 2/ HEMT with a power gain of 9.1dB.


bipolar/bicmos circuits and technology meeting | 2009

A conventional double-polysilicon FSA-SEG Si/SiGe:C HBT reaching 400 GHz f MAX

Pascal Chevalier; Franck Pourchon; T. Lacave; G. Avenier; Y. Campidelli; Linda Depoyan; Germaine Troillard; M. Buczko; Daniel Gloria; D. Celi; C. Gaquiere; A. Chantre

This paper summarizes the work carried out to improve performances of a conventional double-polysilicon FSA-SEG SiGe:C HBT towards 400 GHz f<inf>MAX</inf>. The technological optimization strategy is discussed and electrical characteristics are presented. A record peak f<inf>MAX</inf> of 423 GHz (f<inf>T</inf> = 273 GHz) is demonstrated in SiGe:C HBT technology.


IEEE Electron Device Letters | 2009

InAlN/GaN MOSHEMT With Self-Aligned Thermally Generated Oxide Recess

M. Alomari; F. Medjdoub; Jean-François Carlin; Eric Feltin; N. Grandjean; Andrey Chuvilin; Ute Kaiser; C. Gaquiere; E. Kohn

We report on lattice-matched InAlN/GaN MOSHEMTs with an oxide-filled recess, self-aligned to the gate prepared by thermal oxidation at 800degC in oxygen atmosphere. The device delivered a maximum current density of 2.4 A/mm. Pulse measurements showed no apparent lag effects, indicating a high-quality native oxide. This was confirmed by monitoring the radio-frequency load lines in the time domain. The MOSHEMT yielded a power density of 6 W/mm at a drain voltage as low as 20 V and at 4 GHz, a power added efficiency of 32% and an ft and f max of 61 and 112 GHz, respectively, illustrating the capability of such MOSHEMT to operate at high frequencies.


IEEE Electron Device Letters | 2009

Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation

Clemens Ostermaier; Gianmauro Pozzovivo; Jean-François Carlin; Bernhard Basnar; W. Schrenk; Y. Douvry; C. Gaquiere; Jean-Claude DeJaeger; K. Čičo; K. Fröhlich; M. Gonschorek; N. Grandjean; G. Strasser; D. Pogany; J. Kuzmik

We present GaN-based high electron mobility transistors (HEMTs) with a 2-nm-thin InAlN/AlN barrier capped with highly doped n++ GaN. Selective etching of the cap layer results in a well-controllable ultrathin barrier enhancement-mode device with a threshold voltage of +0.7 V. The n++ GaN layer provides a 290-Omega/\square sheet resistance in the HEMT access region and eliminates current dispersion measured by pulsed IV without requiring additional surface passivation. Devices with a gate length of 0.5-mum exhibit maximum drain current of 800 mA/mm, maximum transconductance of 400 mS/mm, and current cutoff frequency fT of 33.7 GHz. In addition, we demonstrate depletion-mode devices on the same wafer, opening up perspectives for reproducible high-performance InAlN-based digital integrated circuits.


Applied Physics Letters | 2009

Amplified piezoelectric transduction of nanoscale motion in gallium nitride electromechanical resonators

Marc Faucher; Bertrand Grimbert; Y. Cordier; N. Baron; Arnaud Wilk; H. Lahreche; Philippe Bove; Marc François; Pascal Tilmant; Thomas Gehin; Christiane Legrand; Matthieu Werquin; L. Buchaillot; C. Gaquiere; D. Theron

A fully integrated electromechanical resonator is described that is based on high mobility piezoelectric semiconductors for actuation and detection of nanoscale motion. We employ the two-dimensional electron gas present at an AlGaN/GaN interface and the piezoelectric properties of this heterostructure to demonstrate a resonant high-electron-mobility transistor enabling the detection of strain variation. In this device, we take advantage of the polarization field divergence originated by mechanical flexural modes for generating piezoelectric doping. This enables a modulation of carrier density which results in a large current flow and thus constitutes a motion detector with intrinsic amplification.


Journal of Applied Physics | 2011

Electrical characterization of (Ni/Au)/Al0.25Ga0.75N/GaN/SiC Schottky barrier diode

Salah Saadaoui; Mohamed Mongi Ben Salem; Malek Gassoumi; H. Maaref; C. Gaquiere

In this work we report on the characteristics of a (Ni/Au)/AlGaN/GaN/SiC Schottky barrier diode (SBD). A variety of electrical techniques, such as gate current-voltage (I-V), capacitance-voltage (C-V), and deep level transient spectroscopy (DLTS) measurements have been used to characterize the diode. The behavior study of the series resistance, RS, the ideality factor, n, the effective barrier height, Φb, and the leakage current with the temperature have emphasized an inhomogeneity of the barrier height and a tunneling mechanism assisted by traps in the SBD. Hence, C-V measurements successively sweeping up and down the voltage have demonstrate a hysteresis phenomenon which is more pronounced in the temperature range of 240 to 320 K, with a maximum at ∼300 K. This parasitic effect can be attributed to the presence of traps activated at the same range of temperature in the SBD. Using the DLTS technique, we have detected one hole trap having an activation energy and a capture cross-section of 0.75 eV and 1.0...

Collaboration


Dive into the C. Gaquiere's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Hoel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Y. Cordier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J. Mateos

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar

T. González

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.C. De Jaeger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Vellas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guillaume Ducournau

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge