Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Geoffrey Burns is active.

Publication


Featured researches published by C. Geoffrey Burns.


Cell | 2006

A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration

Alexandra Lepilina; Ashley N. Coon; Kazu Kikuchi; Jennifer E. Holdway; Richard W. Roberts; C. Geoffrey Burns; Kenneth D. Poss

Zebrafish possess a unique yet poorly understood capacity for cardiac regeneration. Here, we show that regeneration proceeds through two coordinated stages following resection of the ventricular apex. First a blastema is formed, comprised of progenitor cells that express precardiac markers, undergo differentiation, and proliferate. Second, epicardial tissue surrounding both cardiac chambers induces developmental markers and rapidly expands, creating a new epithelial cover for the exposed myocardium. A subpopulation of these epicardial cells undergoes epithelial-to-mesenchymal transition (EMT), invades the wound, and provides new vasculature to regenerating muscle. During regeneration, the ligand fgf17b is induced in myocardium, while receptors fgfr2 and fgfr4 are induced in adjacent epicardial-derived cells. When fibroblast growth factors (Fgf) signaling is experimentally blocked by expression of a dominant-negative Fgf receptor, epicardial EMT and coronary neovascularization fail, prematurely arresting regeneration. Our findings reveal injury responses by myocardial and epicardial tissues that collaborate in an Fgf-dependent manner to achieve cardiac regeneration.


Current Biology | 2003

heart of glass Regulates the Concentric Growth of the Heart in Zebrafish

John D. Mably; C. Geoffrey Burns; Jau-Nian Chen; Mark C. Fishman; Manzoor-Ali P.K. Mohideen

BACKGROUND Patterned growth of vertebrate organs is essential for normal physiological function, but the underlying pathways that govern organotypic growth are not clearly understood. Heart function is critically dependent upon the concentric thickening of the ventricular wall generated by the addition of cells to the myocardium along the axis from the endocardium (inside) to the outside of the chamber. In heart of glass mutant embryos, the number of cells in the myocardium is normal, but they are not added in the concentric direction. As a consequence, the chambers are huge and dysfunctional, and the myocardium remains a single layer. RESULTS To begin to define the factors controlling the concentric growth of cells in the myocardium, we used positional cloning to identify the heart of glass (heg) gene. heg encodes a protein of previously undescribed function, expressed in the endocardial layer of the heart. By alternative splicing, three distinct isoforms are generated, one of which is predicted to be transmembrane and two other secreted. By selective morpholino perturbation, we demonstrate that the transmembrane form is critical for the normal pattern of growth. CONCLUSIONS heart of glass encodes a previously uncharacterized endocardial signal that is vital for patterning concentric growth of the heart. Growth of the heart requires addition of myocardial cells along the endocardial-to-myocardial axis. This axis of patterning is driven by heg, a novel transmembrane protein expressed in the endocardium.


Molecular Pharmacology | 2006

Aryl Hydrocarbon Receptor Activation Produces Heart-Specific Transcriptional and Toxic Responses in Developing Zebrafish

Sara A. Carney; Jing Chen; C. Geoffrey Burns; Kong M. Xiong; Richard E. Peterson; Warren Heideman

Proper regulation of the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, is required for normal vertebrate cardiovascular development. AHR hyperactivation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during zebrafish (Danio rerio) development results in altered heart morphology and function, culminating in death. To identify genes that may cause cardiac toxicity, we analyzed the transcriptional response to TCDD in zebrafish hearts. Zebrafish larvae were exposed to TCDD for 1 h at 72 h after fertilization (hpf), and the hearts were extracted for microarray analysis at 1, 2, 4, and 12 h after exposure (73, 74, 76, and 84 h postfertilization). The remaining body tissue was also collected at each time for comparison. TCDD rapidly induced expression in 42 genes within 1 to2hof exposure. These genes function in xenobiotic metabolism, proliferation, heart contractility, and pathways that regulate heart development. Furthermore, these expression changes preceded signs of cardiovascular toxicity, characterized by decreased stroke volume, peripheral blood flow, and a halt in heart growth. This identifies strong candidates for important AHR target genes. It is noteworthy that the TCDD-induced transcriptional response in the hearts of zebrafish larvae was substantially different from that induced in the rest of the body tissues. One of the biggest differences included a cluster of genes that were down-regulated 12 h after exposure in heart tissue, but not in the body samples. More than 70% of the transcripts in this heart-specific cluster promote cellular growth and proliferation. Thus, the developing heart stands out as being responsive to TCDD at both the level of toxicity and gene expression.


Nature | 2011

Latent TGF-β binding protein 3 identifies a second heart field in zebrafish.

Yong Zhou; Timothy J. Cashman; Kathleen R. Nevis; Pablo Obregon; Sara A. Carney; Yan Liu; Aihua Gu; Christian Mosimann; Samuel Sondalle; Richard E. Peterson; Warren Heideman; Caroline E. Burns; C. Geoffrey Burns

The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-β binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3+ cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-β ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3+ cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-β signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-β type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3–TGF-β signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.


Developmental Cell | 2015

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration

Ahmed I. Mahmoud; Caitlin C. O’Meara; Matthew Gemberling; Long Zhao; Donald M. Bryant; Ruimao Zheng; Joseph Gannon; Lei Cai; Wen-Yee Choi; Gregory F. Egnaczyk; Caroline E. Burns; C. Geoffrey Burns; Calum A. MacRae; Kenneth D. Poss; Richard T. Lee

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Development | 2010

The miR-143- adducin3 pathway is essential for cardiac chamber morphogenesis

Dekker C. Deacon; Kathleen R. Nevis; Timothy J. Cashman; Yong Zhou; Long Zhao; Daniel Washko; Burcu Guner-Ataman; C. Geoffrey Burns; Caroline E. Burns

Discovering the genetic and cellular mechanisms that drive cardiac morphogenesis remains a fundamental goal, as three-dimensional architecture greatly impacts functional capacity. During development, accurately contoured chambers balloon from a primitive tube in a process characterized by regional changes in myocardial cell size and shape. How these localized changes are achieved remains elusive. Here, we show in zebrafish that microRNA-143 (miR-143) is required for chamber morphogenesis through direct repression of adducin3 (add3), which encodes an F-actin capping protein. Knockdown of miR-143 or disruption of the miR-143-add3 interaction inhibits ventricular cardiomyocyte F-actin remodeling, which blocks their normal growth and elongation and leads to ventricular collapse and decreased contractility. Using mosaic analyses, we find that miR-143 and add3 act cell-autonomously to control F-actin dynamics and cell morphology. As proper chamber emergence relies on precise control of cytoskeletal polymerization, Add3 represents an attractive target to be fine-tuned by both uniform signals, such as miR-143, and undiscovered localized signals. Together, our data uncover the miR-143-add3 genetic pathway as essential for cardiac chamber formation and function through active adjustment of myocardial cell morphology.


Circulation Research | 2010

Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish

Sameer S. Chopra; Dina Myers Stroud; Hiroshi Watanabe; Jeffrey S. Bennett; C. Geoffrey Burns; K. Sam Wells; Tao Yang; Tao P. Zhong; Dan M. Roden

Rationale: Voltage-gated sodium channels initiate action potentials in excitable tissues. Mice in which Scn5A (the predominant sodium channel gene in heart) has been knocked out die early in development with cardiac malformations by mechanisms which have yet to be determined. Objective: Here we addressed this question by investigating the role of cardiac sodium channels in zebrafish heart development. Methods and Results: Transcripts of the functionally-conserved Scn5a homologs scn5Laa and scn5Lab were detected in the gastrulating zebrafish embryo and subsequently in the embryonic myocardium. Antisense knockdown of either channel resulted in marked cardiac chamber dysmorphogenesis and perturbed looping. These abnormalities were associated with decreased expression of the myocardial precursor genes nkx2.5, gata4, and hand2 in anterior lateral mesoderm and significant deficits in the production of cardiomyocyte progenitors. These early defects did not appear to result from altered membrane electrophysiology, as prolonged pharmacological blockade of sodium current failed to phenocopy channel knockdown. Moreover, embryos grown in calcium channel blocker-containing medium had hearts that did not beat but developed normally. Conclusions: These findings identify a novel and possibly nonelectrogenic role for cardiac sodium channels in heart development.


BioTechniques | 2006

Purification of hearts from zebrafish embryos.

C. Geoffrey Burns; Calum A. MacRae

Have a Heart Obtaining pure organ preparation by microdissection from small organisms, such as the zebrafish, Dario rerio, is itself a sufficiently arduous task. Isolating such organs in the same manner from the fish in its embryonic stage is near impossible. With this technical hurdle to mount, Burns et al. developed a simple and straightforward isolation technique, described on p. 274 of this issue, which yielded good quantities of almost homogeneous zebrafish heart. The basic setup included a fine, large-gauge needle and syringe, clamped securely over a microfuge tube containing the zebrafish embryos (those between and 2 and 4 days postfertilization were used). Making use of the shear forces created by repeatedly drawing up and expelling the solution containing suspended embryos, the yolk sac could be broken, and the embryos fragmented. Filtering through two grades of nylon mesh generated a highly pure suspension of zebrafish hearts. The procedure was sufficiently vigorous to produce a good yield, but ...


Development | 2013

Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function.

Burcu Guner-Ataman; Noelle Paffett-Lugassy; Meghan S. Adams; Kathleen R. Nevis; Leila Jahangiri; Pablo Obregon; Kazu Kikuchi; Kenneth D. Poss; Caroline E. Burns; C. Geoffrey Burns

Second heart field (SHF) progenitors perform essential functions during mammalian cardiogenesis. We recently identified a population of cardiac progenitor cells (CPCs) in zebrafish expressing latent TGFβ-binding protein 3 (ltbp3) that exhibits several defining characteristics of the anterior SHF in mammals. However, ltbp3 transcripts are conspicuously absent in anterior lateral plate mesoderm (ALPM), where SHF progenitors are specified in higher vertebrates. Instead, ltbp3 expression initiates at the arterial pole of the developing heart tube. Because the mechanisms of cardiac development are conserved evolutionarily, we hypothesized that zebrafish SHF specification also occurs in the ALPM. To test this hypothesis, we Cre/loxP lineage traced gata4+ and nkx2.5+ ALPM populations predicted to contain SHF progenitors, based on evolutionary conservation of ALPM patterning. Traced cells were identified in SHF-derived distal ventricular myocardium and in three lineages in the outflow tract (OFT). We confirmed the extent of contributions made by ALPM nkx2.5+ cells using Kaede photoconversion. Taken together, these data demonstrate that, as in higher vertebrates, zebrafish SHF progenitors are specified within the ALPM and express nkx2.5. Furthermore, we tested the hypothesis that Nkx2.5 plays a conserved and essential role during zebrafish SHF development. Embryos injected with an nkx2.5 morpholino exhibited SHF phenotypes caused by compromised progenitor cell proliferation. Co-injecting low doses of nkx2.5 and ltbp3 morpholinos revealed a genetic interaction between these factors. Taken together, our data highlight two conserved features of zebrafish SHF development, reveal a novel genetic relationship between nkx2.5 and ltbp3, and underscore the utility of this model organism for deciphering SHF biology.


Developmental Cell | 2015

Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish

Michael R. Harrison; Jeroen Bussmann; Ying Huang; Long Zhao; Arthela Osorio; C. Geoffrey Burns; Caroline E. Burns; Henry M. Sucov; Arndt F. Siekmann; Ching-Ling Lien

Interruption of the coronary blood supply severely impairs heart function with often fatal consequences for patients. However, the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults.

Collaboration


Dive into the C. Geoffrey Burns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calum A. MacRae

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathleen R. Nevis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Juan Manuel González-Rosa

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge