Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caroline E. Burns is active.

Publication


Featured researches published by Caroline E. Burns.


Cell Stem Cell | 2008

Transparent adult zebrafish as a tool for in vivo transplantation analysis.

Richard M. White; Anna Sessa; Christopher J. Burke; Teresa V. Bowman; Jocelyn LeBlanc; Craig J. Ceol; Caitlin Bourque; Michael Dovey; Wolfram Goessling; Caroline E. Burns; Leonard I. Zon

The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.


Neuron | 2007

Notch and MAML Signaling Drives Scl-Dependent Interneuron Diversity in the Spinal Cord

Chian Yu Peng; Hiroshi Yajima; Caroline E. Burns; Leonard I. Zon; Sangram S. Sisodia; Samuel L. Pfaff; Kamal Sharma

The ventral spinal cord generates multiple inhibitory and excitatory interneuron subtypes from four cardinal progenitor domains (p0, p1, p2, p3). Here we show that cell-cell interactions mediated by the Notch receptor play a critical evolutionarily conserved role in the generation of excitatory v2aIN and inhibitory v2bIN interneurons. Lineage-tracing experiments show that the v2aIN and v2bIN develop from genetically identical p2 progenitors. The p2 daughter cell fate is controlled by Delta4 activation of Notch receptors together with MAML factors. Cells receiving Notch signals activate a transcription factor code that specifies the v2bIN fate, whereas cells deprived of Notch signaling express another code for v2aIN formation. Thus, our study provides insight into the cell-extrinsic signaling that controls combinatorial transcription factor profiles involved in regulating the process of interneuron subtype diversification.


Nature | 2011

Latent TGF-β binding protein 3 identifies a second heart field in zebrafish.

Yong Zhou; Timothy J. Cashman; Kathleen R. Nevis; Pablo Obregon; Sara A. Carney; Yan Liu; Aihua Gu; Christian Mosimann; Samuel Sondalle; Richard E. Peterson; Warren Heideman; Caroline E. Burns; C. Geoffrey Burns

The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-β binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3+ cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-β ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3+ cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-β signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-β type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3–TGF-β signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.


PLOS Biology | 2004

The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis

David G Ransom; Nathan Bahary; Knut Niss; David Traver; Caroline E. Burns; Nikolaus S. Trede; Noelle Paffett-Lugassy; Walter J Saganic; C. Anthoney Lim; Candace Hersey; Yi Zhou; Bruce Barut; Shuo Lin; Paul D. Kingsley; James Palis; Stuart H. Orkin; Leonard I. Zon

Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding proteins that regulate transcription in concert with coactivators and corepressors. Mutations in the zebrafish moonshine (mon) gene specifically disrupt both embryonic and adult hematopoiesis, resulting in severe red blood cell aplasia. We report that mon encodes the zebrafish ortholog of mammalian transcriptional intermediary factor 1γ (TIF1γ) (or TRIM33), a member of the TIF1 family of coactivators and corepressors. During development, hematopoietic progenitor cells in mon mutants fail to express normal levels of hematopoietic transcription factors, including gata1, and undergo apoptosis. Three different mon mutant alleles each encode premature stop codons, and enforced expression of wild-type tif1γ mRNA rescues embryonic hematopoiesis in homozygous mon mutants. Surprisingly, a high level of zygotic tif1γ mRNA expression delineates ventral mesoderm during hematopoietic stem cell and progenitor formation prior to gata1 expression. Transplantation studies reveal that tif1γ functions in a cell-autonomous manner during the differentiation of erythroid precursors. Studies in murine erythroid cell lines demonstrate that Tif1γ protein is localized within novel nuclear foci, and expression decreases during erythroid cell maturation. Our results establish a major role for this transcriptional intermediary factor in the differentiation of hematopoietic cells in vertebrates.


Experimental Hematology | 2002

Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators ☆

Caroline E. Burns; Tony DeBlasio; Yi Zhou; Jin Zhang; Leonard I. Zon; Stephen D. Nimer

OBJECTIVE The AML/RUNX family of transcription factors plays important roles in hematopoiesis, neurogenesis, bone development, and segmentation in vertebrate embryos. The aim of this study was to isolate runt-related genes in a genetically and embryologically exploitable system, the zebrafish, and characterize their function during hematopoietic development. MATERIALS AND METHODS Two runt-related genes were isolated by degenerate PCR and standard library screening, and a radiation hybrid panel, T51 RH, was used to resolve their chromosomal localization. In situ hybridization demonstrated their expression whereas their transcriptional activity was assessed using an AML1-responsive reporter gene in the MLA 144 T-cell line. RESULTS We isolated the zebrafish runxa and runxb cDNAs, which encode proteins highly homologous to the human and murine Runx1 (AML1) and Runx3 (AML2) proteins. In contrast to a recent report, we detected runxa expression in both hematopoietic and neural tissues of the developing zebrafish. runxa transcripts first appear during segmentation in bilateral mesodermal cells that coexpress one of the earliest blood and endothelial cell markers, scl/tal-1. By 24 hours postfertilization (hpf), runxa transcripts are seen in the ventral wall of the dorsal aorta. Hematopoietic runxa expression is lost in cloche mutants, which are defective in blood and endothelial cell formation. runxb transcripts are seen in nonhematopoietic domains. Both Runxa and Runxb transactivate an AML1-responsive human promoter in hematopoietic cells. Genomic localization studies demonstrate that runxa is located on linkage group 1 (LG1), and the runxb gene is located on LG13. CONCLUSIONS Our gene expression analysis strongly suggests that both the functional and spatial aorta-gonad-mesonephros (AGM) region has been conserved throughout evolution. Our runxa spatiotemporal expression data shed light on the role of vertebrate Runx1/AML1 in primitive vs definitive hematopoietic development.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration

Long Zhao; Asya Borikova; Raz Ben-Yair; Burcu Guner-Ataman; Calum A. MacRae; Richard T. Lee; Charles Geoffrey Burns; Caroline E. Burns

Significance Heart failure is a term used to describe the heart’s inability to pump sufficient oxygen-rich blood throughout the body. This condition is commonly caused by the loss of heart muscle cells termed cardiomyocytes that results from a heart attack. As one of the least regenerative organs in the human body, the heart fails to regenerate damaged cardiomyocytes, forms a noncontractile scar instead, and progressively fails. Unlike mammals, adult zebrafish robustly regenerate their hearts following injury through division of uninjured cardiomyocytes, thus providing an opportunity to dissect innate cardiac regenerative mechanisms. Here, we provide evidence that Notch signaling is required for cardiomyocyte division and heart regeneration in zebrafish and, therefore, highlight a genetic determinant of natural heart renewal. The human heart’s failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the genetic and cellular determinants of natural cardiac regeneration remain incompletely characterized. Here, we report that cardiac regeneration in zebrafish relies on Notch signaling. Following amputation of the zebrafish ventricular apex, Notch receptor expression becomes activated specifically in the endocardium and epicardium, but not the myocardium. Using a dominant negative approach, we discovered that suppression of Notch signaling profoundly impairs cardiac regeneration and induces scar formation at the amputation site. We ruled out defects in endocardial activation, epicardial activation, and dedifferentiation of compact myocardial cells as causative for the regenerative failure. Furthermore, coronary endothelial tubes, which we lineage traced from preexisting endothelium in wild-type hearts, formed in the wound despite the myocardial regenerative failure. Quantification of myocardial proliferation in Notch-suppressed hearts revealed a significant decrease in cycling cardiomyocytes, an observation consistent with a noncell autonomous requirement for Notch signaling in cardiomyocyte proliferation. Unexpectedly, hyperactivation of Notch signaling also suppressed cardiomyocyte proliferation and heart regeneration. Taken together, our data uncover the exquisite sensitivity of regenerative cardiomyocyte proliferation to perturbations in Notch signaling.


Blood | 2009

A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence.

Caroline E. Burns; Jenna L. Galloway; Alexandra C. H. Smith; Matthew D. Keefe; Timothy J. Cashman; Elizabeth J. Paik; Elizabeth A. Mayhall; Adam Amsterdam; Leonard I. Zon

Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonad-mesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which were subsequently binned into categories representing their proximity to HSC induction. Using overexpression and loss-of-function studies in zebrafish, we ordered these signaling pathways with respect to each other and to the Vegf, Notch, and Runx programs. Overexpression of vegf and notch is sufficient to induce HSCs in the tbx16 mutant, despite a lack of axial vascular organization. Although embryos deficient for artery specification, such as the phospholipase C gamma-1 (plcgamma1) mutant, fail to specify HSCs, overexpression of notch or runx1 can rescue their hematopoietic defect. The most proximal HSC mutants, such as hdac1, were found to have no defect in vessel or artery formation. Further analysis demonstrated that hdac1 acts downstream of Notch signaling but upstream or in parallel to runx1 to promote AGM hematopoiesis. Together, our results establish a hierarchy of signaling programs required and sufficient for HSC emergence in the AGM.


Developmental Cell | 2015

Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration

Ahmed I. Mahmoud; Caitlin C. O’Meara; Matthew Gemberling; Long Zhao; Donald M. Bryant; Ruimao Zheng; Joseph Gannon; Lei Cai; Wen-Yee Choi; Gregory F. Egnaczyk; Caroline E. Burns; C. Geoffrey Burns; Calum A. MacRae; Kenneth D. Poss; Richard T. Lee

Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.


Development | 2010

The miR-143- adducin3 pathway is essential for cardiac chamber morphogenesis

Dekker C. Deacon; Kathleen R. Nevis; Timothy J. Cashman; Yong Zhou; Long Zhao; Daniel Washko; Burcu Guner-Ataman; C. Geoffrey Burns; Caroline E. Burns

Discovering the genetic and cellular mechanisms that drive cardiac morphogenesis remains a fundamental goal, as three-dimensional architecture greatly impacts functional capacity. During development, accurately contoured chambers balloon from a primitive tube in a process characterized by regional changes in myocardial cell size and shape. How these localized changes are achieved remains elusive. Here, we show in zebrafish that microRNA-143 (miR-143) is required for chamber morphogenesis through direct repression of adducin3 (add3), which encodes an F-actin capping protein. Knockdown of miR-143 or disruption of the miR-143-add3 interaction inhibits ventricular cardiomyocyte F-actin remodeling, which blocks their normal growth and elongation and leads to ventricular collapse and decreased contractility. Using mosaic analyses, we find that miR-143 and add3 act cell-autonomously to control F-actin dynamics and cell morphology. As proper chamber emergence relies on precise control of cytoskeletal polymerization, Add3 represents an attractive target to be fine-tuned by both uniform signals, such as miR-143, and undiscovered localized signals. Together, our data uncover the miR-143-add3 genetic pathway as essential for cardiac chamber formation and function through active adjustment of myocardial cell morphology.


Development | 2013

Zebrafish second heart field development relies on progenitor specification in anterior lateral plate mesoderm and nkx2.5 function.

Burcu Guner-Ataman; Noelle Paffett-Lugassy; Meghan S. Adams; Kathleen R. Nevis; Leila Jahangiri; Pablo Obregon; Kazu Kikuchi; Kenneth D. Poss; Caroline E. Burns; C. Geoffrey Burns

Second heart field (SHF) progenitors perform essential functions during mammalian cardiogenesis. We recently identified a population of cardiac progenitor cells (CPCs) in zebrafish expressing latent TGFβ-binding protein 3 (ltbp3) that exhibits several defining characteristics of the anterior SHF in mammals. However, ltbp3 transcripts are conspicuously absent in anterior lateral plate mesoderm (ALPM), where SHF progenitors are specified in higher vertebrates. Instead, ltbp3 expression initiates at the arterial pole of the developing heart tube. Because the mechanisms of cardiac development are conserved evolutionarily, we hypothesized that zebrafish SHF specification also occurs in the ALPM. To test this hypothesis, we Cre/loxP lineage traced gata4+ and nkx2.5+ ALPM populations predicted to contain SHF progenitors, based on evolutionary conservation of ALPM patterning. Traced cells were identified in SHF-derived distal ventricular myocardium and in three lineages in the outflow tract (OFT). We confirmed the extent of contributions made by ALPM nkx2.5+ cells using Kaede photoconversion. Taken together, these data demonstrate that, as in higher vertebrates, zebrafish SHF progenitors are specified within the ALPM and express nkx2.5. Furthermore, we tested the hypothesis that Nkx2.5 plays a conserved and essential role during zebrafish SHF development. Embryos injected with an nkx2.5 morpholino exhibited SHF phenotypes caused by compromised progenitor cell proliferation. Co-injecting low doses of nkx2.5 and ltbp3 morpholinos revealed a genetic interaction between these factors. Taken together, our data highlight two conserved features of zebrafish SHF development, reveal a novel genetic relationship between nkx2.5 and ltbp3, and underscore the utility of this model organism for deciphering SHF biology.

Collaboration


Dive into the Caroline E. Burns's collaboration.

Top Co-Authors

Avatar

Leonard I. Zon

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth A. Mayhall

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Kathleen R. Nevis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Zhou

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Manuel González-Rosa

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Alexandra C. H. Smith

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge