C.H.J. Hartgerink
Tilburg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.H.J. Hartgerink.
PLOS ONE | 2015
C.H.J. Hartgerink; Ilja van Beest; Jelte M. Wicherts; Kipling D. Williams
We examined 120 Cyberball studies (N = 11,869) to determine the effect size of ostracism and conditions under which the effect may be reversed, eliminated, or small. Our analyses showed that (1) the average ostracism effect is large (d > |1.4|) and (2) generalizes across structural aspects (number of players, ostracism duration, number of tosses, type of needs scale), sampling aspects (gender, age, country), and types of dependent measure (interpersonal, intrapersonal, fundamental needs). Further, we test Williams’s (2009) proposition that the immediate impact of ostracism is resistant to moderation, but that moderation is more likely to be observed in delayed measures. Our findings suggest that (3) both first and last measures are susceptible to moderation and (4) time passed since being ostracized does not predict effect sizes of the last measure. Thus, support for this proposition is tenuous and we suggest modifications to the temporal need-threat model of ostracism.
Behavior Research Methods | 2016
Michèle B. Nuijten; C.H.J. Hartgerink; Marcel A.L.M. van Assen; Sacha Epskamp; Jelte M. Wicherts
This study documents reporting errors in a sample of over 250,000 p-values reported in eight major psychology journals from 1985 until 2013, using the new R package “statcheck.” statcheck retrieved null-hypothesis significance testing (NHST) results from over half of the articles from this period. In line with earlier research, we found that half of all published psychology papers that use NHST contained at least one p-value that was inconsistent with its test statistic and degrees of freedom. One in eight papers contained a grossly inconsistent p-value that may have affected the statistical conclusion. In contrast to earlier findings, we found that the average prevalence of inconsistent p-values has been stable over the years or has declined. The prevalence of gross inconsistencies was higher in p-values reported as significant than in p-values reported as nonsignificant. This could indicate a systematic bias in favor of significant results. Possible solutions for the high prevalence of reporting inconsistencies could be to encourage sharing data, to let co-authors check results in a so-called “co-pilot model,” and to use statcheck to flag possible inconsistencies in one’s own manuscript or during the review process.
Psychological Science | 2016
Marjan Bakker; C.H.J. Hartgerink; Jelte M. Wicherts; Han L. J. van der Maas
Many psychology studies are statistically underpowered. In part, this may be because many researchers rely on intuition, rules of thumb, and prior practice (along with practical considerations) to determine the number of subjects to test. In Study 1, we surveyed 291 published research psychologists and found large discrepancies between their reports of their preferred amount of power and the actual power of their studies (calculated from their reported typical cell size, typical effect size, and acceptable alpha). Furthermore, in Study 2, 89% of the 214 respondents overestimated the power of specific research designs with a small expected effect size, and 95% underestimated the sample size needed to obtain .80 power for detecting a small effect. Neither researchers’ experience nor their knowledge predicted the bias in their self-reported power intuitions. Because many respondents reported that they based their sample sizes on rules of thumb or common practice in the field, we recommend that researchers conduct and report formal power analyses for their studies.
PeerJ | 2016
C.H.J. Hartgerink; Robbie C. M. van Aert; Michèle B. Nuijten; Jelte M. Wicherts; Marcel A.L.M. van Assen
Previous studies provided mixed findings on pecularities in p-value distributions in psychology. This paper examined 258,050 test results across 30,710 articles from eight high impact journals to investigate the existence of a peculiar prevalence of p-values just below .05 (i.e., a bump) in the psychological literature, and a potential increase thereof over time. We indeed found evidence for a bump just below .05 in the distribution of exactly reported p-values in the journals Developmental Psychology, Journal of Applied Psychology, and Journal of Personality and Social Psychology, but the bump did not increase over the years and disappeared when using recalculated p-values. We found clear and direct evidence for the QRP “incorrect rounding of p-value” (John, Loewenstein & Prelec, 2012) in all psychology journals. Finally, we also investigated monotonic excess of p-values, an effect of certain QRPs that has been neglected in previous research, and developed two measures to detect this by modeling the distributions of statistically significant p-values. Using simulations and applying the two measures to the retrieved test results, we argue that, although one of the measures suggests the use of QRPs in psychology, it is difficult to draw general conclusions concerning QRPs based on modeling of p-value distributions.
Accountability in Research | 2017
Coosje Lisabet Sterre Veldkamp; C.H.J. Hartgerink; Marcel A.L.M. van Assen; Jelte M. Wicherts
ABSTRACT Do lay people and scientists themselves recognize that scientists are human and therefore prone to human fallibilities such as error, bias, and even dishonesty? In a series of three experimental studies and one correlational study (total N = 3,278) we found that the “storybook image of the scientist” is pervasive: American lay people and scientists from over 60 countries attributed considerably more objectivity, rationality, open-mindedness, intelligence, integrity, and communality to scientists than to other highly-educated people. Moreover, scientists perceived even larger differences than lay people did. Some groups of scientists also differentiated between different categories of scientists: established scientists attributed higher levels of the scientific traits to established scientists than to early-career scientists and Ph.D. students, and higher levels to Ph.D. students than to early-career scientists. Female scientists attributed considerably higher levels of the scientific traits to female scientists than to male scientists. A strong belief in the storybook image and the (human) tendency to attribute higher levels of desirable traits to people in one’s own group than to people in other groups may decrease scientists’ willingness to adopt recently proposed practices to reduce error, bias and dishonesty in science.
Publications | 2018
C.H.J. Hartgerink; Marino van Zelst
Scholarly research faces threats to its sustainability on multiple domains (access, incentives, reproducibility, inclusivity). We argue that “after-the-fact” research papers do not help and actually cause some of these threats because the chronology of the research cycle is lost in a research paper. We propose to give up the academic paper and propose a digitally native “as-you-go” alternative. In this design, modules of research outputs are communicated along the way and are directly linked to each other to form a network of outputs that can facilitate research evaluation. This embeds chronology in the design of scholarly communication and facilitates the recognition of more diverse outputs that go beyond the paper (e.g., code, materials). Moreover, using network analysis to investigate the relations between linked outputs could help align evaluation tools with evaluation questions. We illustrate how such a modular “as-you-go” design of scholarly communication could be structured and how network indicators could be computed to assist in the evaluation process, with specific use cases for funders, universities, and individual researchers.
PeerJ | 2017
C.H.J. Hartgerink
Head et al. (2015) provided a large collection of p-values that, from their perspective, indicates widespread statistical significance seeking (i.e., p-hacking). This paper inspects this result for robustness. Theoretically, the p-value distribution should be a smooth, decreasing function, but the distribution of reported p-values shows systematically more reported p-values for .01, .02, .03, .04, and .05 than p-values reported to three decimal places, due to apparent tendencies to round p-values to two decimal places. Head et al. (2015) correctly argue that an aggregate p-value distribution could show a bump below .05 when left-skew p-hacking occurs frequently. Moreover, the elimination of p = .045 and p = .05, as done in the original paper, is debatable. Given that eliminating p = .045 is a result of the need for symmetric bins and systematically more p-values are reported to two decimal places than to three decimal places, I did not exclude p = .045 and p = .05. I conducted Fisher’s method .04 < p < .05 and reanalyzed the data by adjusting the bin selection to .03875 < p ≤ .04 versus .04875 < p ≤ .05. Results of the reanalysis indicate that no evidence for left-skew p-hacking remains when we look at the entire range between .04 < p < .05 or when we inspect the second-decimal. Taking into account reporting tendencies when selecting the bins to compare is especially important because this dataset does not allow for the recalculation of the p-values. Moreover, inspecting the bins that include two-decimal reported p-values potentially increases sensitivity if strategic rounding down of p-values as a form of p-hacking is widespread. Given the far-reaching implications of supposed widespread p-hacking throughout the sciences Head et al. (2015), it is important that these findings are robust to data analysis choices if the conclusion is to be considered unequivocal. Although no evidence of widespread left-skew p-hacking is found in this reanalysis, this does not mean that there is no p-hacking at all. These results nuance the conclusion by Head et al. (2015), indicating that the results are not robust and that the evidence for widespread left-skew p-hacking is ambiguous at best.
Social Psychology | 2014
Marie-Pierre Fayant; Dominique Muller; C.H.J. Hartgerink; Anthony Lantian
Archive | 2013
C.H.J. Hartgerink; Jelte M. Wicherts; Ilja van Beest; Kipling D. Williams
Collabra: Psychology | 2017
C.H.J. Hartgerink; Jelte M. Wicherts; M.A.L.M. van Assen