Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. H. W. Barnes is active.

Publication


Featured researches published by C. H. W. Barnes.


Journal of Physical Chemistry B | 2010

The structure of graphite oxide: investigation of its surface chemical groups.

D. W. Lee; J. W. Seo; L. Leon Felix; J. M. Cole; C. H. W. Barnes

The structure of graphite oxide (GO) has been systematically studied using various tools such as SEM, TEM, XRD, Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), (13)C solid-state NMR, and O K-edge X-ray absorption near edge structure (XANES). The TEM data reveal that GO consists of amorphous and crystalline phases. The XPS data show that some carbon atoms have sp(3) orbitals and others have sp(2) orbitals. The ratio of sp(2) to sp(3) bonded carbon atoms decreases as sample preparation times increase. The (13)C solid-state NMR spectra of GO indicate the existence of -OH and -O- groups for which peaks appear at 60 and 70 ppm, respectively. FT-IR results corroborate these findings. The existence of ketone groups is also implied by FT-IR, which is verified by O K-edge XANES and (13)C solid-state NMR. We propose a new model for GO based on the results; -O-, -OH, and -C=O groups are on the surface.


Nature Materials | 2011

Electrically tunable spin injector free from the impedance mismatch problem

Kazuya Ando; Saburo Takahashi; Jun'ichi Ieda; H. Kurebayashi; T. Trypiniotis; C. H. W. Barnes; Sadamichi Maekawa; Eiji Saitoh

Injection of spin currents into solids is crucial for exploring spin physics and spintronics. There has been significant progress in recent years in spin injection into high-resistivity materials, for example, semiconductors and organic materials, which uses tunnel barriers to circumvent the impedance mismatch problem; the impedance mismatch between ferromagnetic metals and high-resistivity materials drastically limits the spin-injection efficiency. However, because of this problem, there is no route for spin injection into these materials through low-resistivity interfaces, that is, Ohmic contacts, even though this promises an easy and versatile pathway for spin injection without the need for growing high-quality tunnel barriers. Here we show experimental evidence that spin pumping enables spin injection free from this condition; room-temperature spin injection into GaAs from Ni(81)Fe(19) through an Ohmic contact is demonstrated through dynamical spin exchange. Furthermore, we demonstrate that this exchange can be controlled electrically by applying a bias voltage across a Ni(81)Fe(19)/GaAs interface, enabling electric tuning of the spin-pumping efficiency.


Physical Review B | 1999

SPIN-VALVE EFFECTS IN A SEMICONDUCTOR FIELD-EFFECT TRANSISTOR : A SPINTRONIC DEVICE

S. Gardelis; C. G. Smith; C. H. W. Barnes; E. H. Linfield; D. A. Ritchie

We present a spintronic semiconductor field-effect transistor. The injector and collector contacts of this device were made from magnetic permalloy thin films with different coercive fields so that they could be magnetized either parallel or antiparallel to each other in different applied magnetic fields. The conducting medium was a two-dimensional electron gas (2DEG) formed in an AlSb/InAs quantum well. Data from this device suggest that its resistance is controlled by two different types of spin-valve effect: the first occurring at the ferromagnet-2DEG interfaces; and the second occurring in direct propagation between contacts.


Nature | 2011

On-demand single-electron transfer between distant quantum dots

Robert McNeil; M. Kataoka; C. J. B. Ford; C. H. W. Barnes; D. Anderson; G. A. C. Jones; I. Farrer; D. A. Ritchie

Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part of the circuit to another. For example, in a quantum computer decoherence and circuit complexity can be reduced by separating quantum bit (qubit) manipulation from measurement and by providing a means of transporting electrons between the corresponding parts of the circuit. Highly controlled tunnelling between neighbouring dots has been demonstrated, and our ability to manipulate electrons in single- and double-dot systems is improving rapidly. For distances greater than a few hundred nanometres, neither free propagation nor tunnelling is viable while maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second, unoccupied, dot along a long, empty channel. The transfer direction may be reversed and the same electron moved back and forth more than sixty times—a cumulative distance of 0.25 mm—without error. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information processing components and devices.


Physical Review B | 1999

Effect of the spin-orbit interaction on the band structure and conductance of quasi-one-dimensional systems

A. V. Moroz; C. H. W. Barnes

We discuss the effect of the spin-orbit interaction on the band structure, wave functions and low temperature conductance of long quasi-one-dimensional electron systems patterned in two-dimensional electron gases (2DEG). Our model for these systems consists of a linear (Rashba) potential confinement in the direction perpendicular to the 2DEG and a parabolic confinement transverse to the 2DEG. We find that these two terms can significantly affect the band structure introducing a wave vector dependence to subband energies, producing additional subband minima and inducing anticrossings between subbands. We discuss the origin of these effects in the symmetries of the subband wave functions.


Quantum Information & Computation | 2001

Quantum computation using electrons trapped by surface acoustic waves

C. H. W. Barnes; J. M. Shilton; A. M. Robinson

We describe in detail a set of ideas for implementing qubits, quantum gates, and quantum gate networks in a semiconductor heterostructure device. Our proposal is based on an extension of the technology used for surface acoustic wave (SAW) based single-electron transport devices. These devices allow single electrons to be captured from a two-dimensional electron gas in the potential minima of a SAW. We discuss how this technology can be adapted to allow the capture of electrons in pure spin states and how both single and two-qubit gates can be constructed using magnetic and nonmagnetic gate technology. We give designs for readout gates to allow the spin state of the electrons to be measured and discuss how combinations of gates can be connected to make multiqubit networks. Finally we consider decoherence and other sources of error, and how they can be minimized for our design.


Physical Review B | 2003

Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity

Thomas M. Stace; G. J. Milburn; C. H. W. Barnes

A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically pumped biexciton in a quantum dot. Symmetric dots produce polarization entanglement, but experimentally realized asymmetric dots produce photons entangled in both polarization and frequency. In this work, we investigate the possibility of erasing the “which-path” information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarization-entangled photons. We consider a biexciton with nondegenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the nondegenerate exciton transition frequencies. An open quantum system approach is used to compute the polarization entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of the Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarization-entangled photon pairs, and even a nonideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.


Journal of Applied Physics | 1999

Magnetization reversal and magnetoresistance in a lateral spin-injection device

Wooyoung Lee; S. Gardelis; B.-C. Choi; Yongbing Xu; C. G. Smith; C. H. W. Barnes; D. A. Ritchie; E. H. Linfield; J. A. C. Bland

We have investigated the magnetization reversal and magnetoresistance (MR) behavior of a lateral spin-injection device. The device consists of a two-dimensional electron gas (2DEG) system in an InAs quantum well and two ferromagnetic (Ni80Fe20) contacts: an injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and propagating through InAs are collected by the second contact. By engineering the shape of the permalloy film distinct switching fields (Hc) from the injector and the collector have been observed by scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20–60 Oe), at room temperature, over which magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.


Physical Review B | 2000

Spin-orbit interaction as a source of spectral and transport properties in quasi-one-dimensional systems

A. V. Moroz; C. H. W. Barnes

We present an exact theoretical study of the effect of the spin-orbit (SO) interaction on the band structure and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which cannot in principle be observed in higher dimensional systems.


Applied Physics Letters | 2010

Spin transport in germanium at room temperature

C. Shen; T. Trypiniotis; K. Y. Lee; S. N. Holmes; Rhodri Mansell; Muhammad Husain; V. A. Shah; X. Li; H. Kurebayashi; I. Farrer; C.H. de Groot; D. R. Leadley; Gavin R. Bell; E. H. C. Parker; Terry E. Whall; David A. Ritchie; C. H. W. Barnes

Spin-dependent transport is investigated in a Ni/Ge/AlGaAs junction with an electrodeposited Ni contact. Spin-polarised electrons are excited by optical spin orientation and are subsequently used to measure the spin dependent conductance at the Ni/Ge Schottky interface. We successfully demonstrate electron spin transport and electrical extraction from the Ge layer at room temperature.

Collaboration


Dive into the C. H. W. Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Pepper

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Farrer

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

D. Anderson

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

T. Mitrelias

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

A. Ionescu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

M. Kataoka

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge