Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Farrer is active.

Publication


Featured researches published by I. Farrer.


Science | 2009

Probing Spin-Charge Separation in a Tomonaga-Luttinger Liquid

Y. Jompol; C. J. B. Ford; Jonathan Griffiths; I. Farrer; G. A. C. Jones; D. Anderson; D. A. Ritchie; T.W. Silk; A. J. Schofield

Electron Breakdown An electron possesses charge and spin. In general, these properties are confined to the electron. However, in strongly interacting many-body electronic systems, such as one-dimensional wires, it has long been theorized that the charge and spin should separate. There have been tantalizing glimpses of this separation experimentally, but questions remain. Jompol et al. (p. 597) looked at the tunneling current between an array of one-dimensional wires and a two-dimensional electron gas and argue that the results reveal a clear signature of spin-charge separation. Electronic spin and charge respond differently during tunneling between low-dimensional electron systems. In a one-dimensional (1D) system of interacting electrons, excitations of spin and charge travel at different speeds, according to the theory of a Tomonaga-Luttinger liquid (TLL) at low energies. However, the clear observation of this spin-charge separation is an ongoing challenge experimentally. We have fabricated an electrostatically gated 1D system in which we observe spin-charge separation and also the predicted power-law suppression of tunneling into the 1D system. The spin-charge separation persists even beyond the low-energy regime where the TLL approximation should hold. TLL effects should therefore also be important in similar, but shorter, electrostatically gated wires, where interaction effects are being studied extensively worldwide.


Physical Review Letters | 2016

Time-of-Flight Measurements of Single-Electron Wave Packets in Quantum Hall Edge States.

M. Kataoka; N. Johnson; Clive Emary; Patrick See; J. P. Griffiths; Gac Jones; I. Farrer; David A. Ritchie; M. Pepper; T. J. B. M. Janssen

We report time-of-flight measurements on electrons traveling in quantum Hall edge states. Hot-electron wave packets are emitted one per cycle into edge states formed along a depleted sample boundary. The electron arrival time is detected by driving a detector barrier with a square wave that acts as a shutter. By adding an extra path using a deflection barrier, we measure a delay in the arrival time, from which the edge-state velocity v is deduced. We find that v follows 1/B dependence, in good agreement with the E[over →]×B[over →] drift. The edge potential is estimated from the energy dependence of v using a harmonic approximation.


Applied Physics Letters | 2017

Ultrafast voltage sampling using single-electron wavepackets

N. Johnson; J. D. Fletcher; D. A. Humphreys; P. See; J. P. Griffiths; G. A. C. Jones; I. Farrer; D. A. Ritchie; M. Pepper; T. J. B. M. Janssen; M. Kataoka

We demonstrate an ultrafast voltage sampling technique using a stream of electron wavepackets. Electrons are emitted from a single-electron pump and travel through electron waveguides towards a detector potential barrier. Our electrons sample an instantaneous voltage on the gate upon arrival at the detector barrier. Fast sampling is achieved by minimising the duration that the electrons interact with the barrier, which can be made as small as a few picoseconds. The value of the instantaneous voltage can be determined by varying the gate voltage to match the barrier height to the electron energy, which is used as a stable reference. The test waveform can be reconstructed by shifting the electron arrival time against it. Although we find that the our current system is limited by the experimental line bandwidth to 12–18 GHz, we argue that this method has scope to increase the bandwidth of voltage sampling to 100 GHz and beyond.


Nature | 2010

An entangled-light-emitting diode

C. L. Salter; R. M. Stevenson; I. Farrer; C. A. Nicoll; D. A. Ritchie; A. J. Shields

An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.


Nature Photonics | 2010

Two-photon interference of the emission from electrically tunable remote quantum dots

Raj B. Patel; A. J. Bennett; I. Farrer; C. A. Nicoll; D. A. Ritchie; A. J. Shields

Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm−1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically ∼ 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots. PACS numbers: 78.67.-n, 85.35.Ds ∗Electronic address: [email protected]


Applied Physics Letters | 2000

Detection of single photons using a field-effect transistor gated by a layer of quantum dots

A. J. Shields; M. P. O’Sullivan; I. Farrer; D. A. Ritchie; R. A. Hogg; M. L. Leadbeater; Carl E. Norman; M. Pepper

We demonstrate that the conductance of a field-effect transistor (FET) gated by a layer of nanometer-sized quantum dots is sensitive to the absorption of single photons. Rather than relying upon an avalanche process, as in conventional semiconductor single-photon detectors, the gain in this device derives from the fact that the conductivity of the FET channel is very sensitive to the photoexcited charge trapped in the dots. This phenomenon may allow a type of three-terminal single-photon detector to be developed based upon FET technology.


Nature | 2011

On-demand single-electron transfer between distant quantum dots

Robert McNeil; M. Kataoka; C. J. B. Ford; C. H. W. Barnes; D. Anderson; G. A. C. Jones; I. Farrer; D. A. Ritchie

Single-electron circuits of the future, consisting of a network of quantum dots, will require a mechanism to transport electrons from one functional part of the circuit to another. For example, in a quantum computer decoherence and circuit complexity can be reduced by separating quantum bit (qubit) manipulation from measurement and by providing a means of transporting electrons between the corresponding parts of the circuit. Highly controlled tunnelling between neighbouring dots has been demonstrated, and our ability to manipulate electrons in single- and double-dot systems is improving rapidly. For distances greater than a few hundred nanometres, neither free propagation nor tunnelling is viable while maintaining confinement of single electrons. Here we show how a single electron may be captured in a surface acoustic wave minimum and transferred from one quantum dot to a second, unoccupied, dot along a long, empty channel. The transfer direction may be reversed and the same electron moved back and forth more than sixty times—a cumulative distance of 0.25 mm—without error. Such on-chip transfer extends communication between quantum dots to a range that may allow the integration of discrete quantum information processing components and devices.


Nature Communications | 2012

Towards a quantum representation of the ampere using single electron pumps

S. P. Giblin; M. Kataoka; J. D. Fletcher; P. See; T. J. B. M. Janssen; J. P. Griffiths; G. A. C. Jones; I. Farrer; D. A. Ritchie

Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantized electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (p.p.m.) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 p.p.m. This type of pump is a promising candidate for further development as a realization of the SI base unit ampere, following a redefinition of the ampere in terms of a fixed value of the elementary charge.


Nature Physics | 2010

Electric-field-induced coherent coupling of the exciton states in a single quantum dot

A. J. Bennett; M. A. Pooley; R. M. Stevenson; M. B. Ward; Raj B. Patel; A. Boyer de la Giroday; Niklas Sköld; I. Farrer; C. A. Nicoll; D. A. Ritchie; A. J. Shields

The ability to generate entangled photon pairs from a quantum dot critically depends on the size of the fine-structure splitting of its exciton states. A demonstration of the ability to tune this splitting with an electric field represents a promising step in the use of quantum dots to generate entangled photon pairs on demand.


Nature Nanotechnology | 2015

All-electric all-semiconductor spin field-effect transistors

Pojen Chuang; Sheng-Chin Ho; Luke Smith; F. Sfigakis; M. Pepper; Chin-Hung Chen; Ju-Chun Fan; J. P. Griffiths; I. Farrer; Harvey E. Beere; Gac Jones; David A. Ritchie; T-M Chen

The spin field-effect transistor envisioned by Datta and Das opens a gateway to spin information processing. Although the coherent manipulation of electron spins in semiconductors is now possible, the realization of a functional spin field-effect transistor for information processing has yet to be achieved, owing to several fundamental challenges such as the low spin-injection efficiency due to resistance mismatch, spin relaxation and the spread of spin precession angles. Alternative spin transistor designs have therefore been proposed, but these differ from the field-effect transistor concept and require the use of optical or magnetic elements, which pose difficulties for incorporation into integrated circuits. Here, we present an all-electric and all-semiconductor spin field-effect transistor in which these obstacles are overcome by using two quantum point contacts as spin injectors and detectors. Distinct engineering architectures of spin-orbit coupling are exploited for the quantum point contacts and the central semiconductor channel to achieve complete control of the electron spins (spin injection, manipulation and detection) in a purely electrical manner. Such a device is compatible with large-scale integration and holds promise for future spintronic devices for information processing.

Collaboration


Dive into the I. Farrer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Pepper

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. A. Nicoll

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge