Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Hellesen is active.

Publication


Featured researches published by C. Hellesen.


Review of Scientific Instruments | 2006

The TOFOR neutron spectrometer and its first use at JET

M. Gatu Johnson; L. Giacomelli; Anders Hjalmarsson; M. Weiszflog; E. Andersson Sundén; S. Conroy; G. Ericsson; C. Hellesen; Jan Källne; E. Ronchi; Henrik Sjöstrand; G. Gorini; M. Tardocchi; A. Murari; S. Popovichev; J. Sousa; R. C. Pereira; A. Combo; N. Cruz; Jet-Efda Contributors

A time-of-flight neutron spectrometer (TOFOR) has been developed to measure the 2.45 MeV d+d→3He+n neutron emission from D plasmas. The TOFOR design features the capability to operate at high rates in the 100 kHz range, data collection with fast time digitizing and storing, and monitoring of the signals from the scintillation detectors used. This article describes the principles of the instrument and its installation at JET and presents preliminary data to illustrate the TOFOR performance as a neutron emission spectroscopy diagnostic.


Nuclear Fusion | 2010

Measurements of fast ions and their interactions with MHD activity using neutron emission spectroscopy

C. Hellesen; M. Gatu Johnson; E. Andersson Sundén; S. Conroy; G. Ericsson; Jacob Eriksson; G. Gorini; Thomas Johnson; V. Kiptily; S. D. Pinches; S. E. Sharapov; Henrik Sjöstrand; M. Nocente; M. Tardocchi; M. Weiszflog

Ion cyclotron radio frequency (ICRF) heating can produce fast ion populations with energies reaching up to several megaelectronvolts. Here, we present unique measurements of fast ion distributions from an experiment with 3rd harmonic ICRF heating on deuterium beams using neutron emission spectroscopy (NES). From the experiment, very high DD neutron rates were observed, using only modest external heating powers. This was attributed to acceleration of deuterium beam ions to energies up to about 2-3 MeV, where the DD reactivity is on a par with that of the DT reaction. The high neutron rates allowed for observations of changes in the fast deuterium energy distribution on a time scale of 50 ms. Clear correlations were seen between fast deuterium ions in different energy ranges and magnetohydrodynamic activities, such as monster sawteeth and toroidal Alfven eigen modes (TAE). Specifically, NES data showed that the number of deuterons in the region between 1 and 1.5 MeV were decaying significantly during strong TAE activity, while ions with lower energies around 500 keV were not affected. This was attributed to resonances with the TAE modes.


Nuclear Fusion | 2012

High-resolution gamma ray spectroscopy measurements of the fast ion energy distribution in JET 4He plasmas

M. Nocente; M. Tardocchi; V. Kiptily; Patrick Blanchard; I.N. Chugunov; S. Conroy; T. Edlington; A.M. Fernandes; G. Ericsson; M. Gatu Johnson; D. Gin; G. Grosso; C. Hellesen; K. Kneupner; E. Lerche; A. Murari; A. Neto; R.C. Pereira; E. Perelli Cippo; S. E. Sharapov; A. E. Shevelev; J. Sousa; D. B. Syme; D. Van Eester; G. Gorini; Jet-Efda Contributors

High-resolution ?-ray measurements were carried out on the Joint European Torus (JET) in an experiment aimed at accelerating 4He ions in the MeV range by coupling third harmonic radio frequency heating to an injected 4He beam. For the first time, Doppler broadening of ?-ray peaks from the 12C(d, p?)13C and 9Be(?, n?)12C reactions was observed and interpreted with dedicated Monte Carlo codes based on the detailed nuclear physics of the processes. Information on the confined 4He and deuteron energy distribution was inferred, and confined 4He ions with energies as high as 6?MeV were assessed. A signature of MHD activity in ?-ray traces was also detected. The reported results have a bearing on diagnostics for fast ions in the MeV range in next step fusion devices.


Nuclear Fusion | 2013

Energetic Particle Instabilities in Fusion Plasmas

S. E. Sharapov; B. Alper; H. L. Berk; D. Borba; Boris N. Breizman; C. D. Chaliis; I. G. J. Classen; E. M. Endlund; Jacob Eriksson; A. Fasoli; E.D. Fredrickson; G. Y. Fu; M. Garcia-Munoz; T. Gassner; Katy Ghantous; V. Goloborod'ko; N.N. Gorelenkov; M. Gryaznevich; S. Hacquin; W.W. Heidbrink; C. Hellesen; V. Kiptily; G.J. Kramer; P. Lauber; Matthew Lilley; Mietek Lisak; F. Nabais; R. Nazikian; Robert Nyqvist; M. Osakabe

Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfven instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.


Nuclear Fusion | 2013

Fast-ion distributions from third harmonic ICRF heating studied with neutron emission spectroscopy

C. Hellesen; M. Gatu Johnson; E. Andersson Sundén; S. Conroy; G. Ericsson; Jacob Eriksson; Henrik Sjöstrand; M. Weiszflog; Thomas Johnson; G. Gorini; M. Nocente; M. Tardocchi; V. Kiptily; S. D. Pinches; S. E. Sharapov

The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.


Nuclear Fusion | 2015

Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

Jacob Eriksson; M. Nocente; Federico Binda; C. Cazzaniga; S. Conroy; G. Ericsson; L. Giacomelli; G. Gorini; C. Hellesen; Torbjörn Hellsten; Anders Hjalmarsson; A. S. Jacobsen; Thomas Johnson; V. Kiptily; T. Koskela; M. Mantsinen; M. Salewski; M. Schneider; S. E. Sharapov; Mateusz Skiba; M. Tardocchi; M. Weiszflog

Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are ba ...


Nuclear Fusion | 2010

Neutron emission from beryllium reactions in JET deuterium plasmas with 3He minority

Maria Gatu Johnson; C. Hellesen; Erik Andersson Sundén; Marco Cecconello; S. Conroy; G. Ericsson; G. Gorini; Vasily Kiptily; M. Nocente; S. D. Pinches; E. Ronchi; S. E. Sharapov; Henrik Sjöstrand; M. Tardocchi; M. Weiszflog

Recent fast ion studies at JET involve ion cyclotron resonance frequency (ICRF) heating tuned to minority He-3 in cold deuterium plasmas, with beryllium evaporation in the vessel prior to the se ...


Plasma Physics and Controlled Fusion | 2009

JET (3He)-D scenarios relying on RF heating: survey of selected recent experiments

D. Van Eester; E. Lerche; Y. Andrew; Tm Biewer; A. Casati; Kristel Crombé; E. de la Luna; G. Ericsson; R. Felton; L. Giacomelli; C. Giroud; N. C. Hawkes; C. Hellesen; Anders Hjalmarsson; E. Joffrin; J. Källne; V. Kiptily; P. Lomas; P. Mantica; A. Marinoni; M.-L. Mayoral; J. Ongena; M. E. Puiatti; M. Santala; S. Sharapov; M. Valisa

Recent JET experiments have been devoted to the study of (He-3)-D plasmas involving radio frequency (RF) heating. This paper starts by discussing the RF heating efficiency theoretically expected in such plasmas, covering both relevant aspects of wave and of particle dynamics. Then it gives a concise summary of the main conclusions drawn from recent experiments that were either focusing on studying RF heating physics aspects or that were adopting RF heating as a tool to study plasma behavior. Depending on the minority concentration chosen, different physical phenomena are observed. At very low concentration (X[He-3] > 10% electron mode conversion damping becomes dominant. Evidence for the Fuchs et al standing wave effect (Fuchs et al 1995 Phys. Plasmas 2 1637-47) on the absorption is presented. RF induced deuterium tails were observed in mode conversion experiments with large X[He-3] (approximate to 18%). As tentative modeling shows, the formation of these tails can be explained as a consequence of wave power absorption by neutral beam particles that efficiently interact with the waves well away from the cold D cyclotron resonance position as a result of their substantial Doppler shift. As both ion and electron RF power deposition profiles in (He-3)-D plasmas are fairly narrow-giving rise to localized heat sources-the RF heating method is an ideal tool for performing transport studies. Various of the experiments discussed here were done in plasmas with internal transport barriers (ITBs). ITBs are identified as regions with locally reduced diffusivity, where poloidal spinning up of the plasma is observed. The present know-how on the role of RF heating for impurity transport is also briefly summarized.


Plasma Physics and Controlled Fusion | 2010

Neutron spectroscopy measurements and modeling of neutral beam heating fast ion dynamics

C. Hellesen; M. Albergante; E. Andersson Sundén; L. Ballabio; S. Conroy; G. Ericsson; M. Gatu Johnsson; L. Giacomelli; G. Gorini; Anders Hjalmarsson; I. Jenkins; J. Källne; E. Ronchi; Henrik Sjöstrand; M. Tardocchi; I. Voitsekhovitch; M. Weiszflog

The energy spectrum of the neutron emission from beam-target reactions in fusion plasmas at the Joint European Torus (JET) has been investigated. Different beam energies as well as injection angles were used. Both measurements and simulations of the energy spectrum were done. The measurements were made with the time-of-flight spectrometer TOFOR. Simulations of the neutron spectrum were based on first-principle calculations of neutral beam deposition profiles and the fast ion slowing down in the plasma using the code NUBEAM, which is a module of the TRANSP package. The shape of the neutron energy spectrum was seen to vary significantly depending on the energy of the beams as well as the injection angle and the deposition profile in the plasma. Cross validations of the measured and modeled neutron energy spectra were made, showing a good agreement for all investigated scenarios.


Nuclear Fusion | 2010

Neutron emission generated by fast deuterons accelerated with ion cyclotron heating at JET

C. Hellesen; M. Gatu Johnson; E. Anderson Sunden; S. Conroy; G. Ericsson; E. Ronchi; Henrik Sjöstrand; M. Weiszflog; G. Gorini; M. Tardocchi; Thomas Johnson; V. Kiptily; S. D. Pinches; S. E. Sharapov

For the first time, the neutron emission from JET plasmas heated with combined deuterium neutral beam injection and third harmonic ion cyclotron radio frequency heating have been studied with neutron emission spectroscopy (NES). Very high DD neutron rates were observed with only modest external heating powers, which was attributed to acceleration of deuterium beam ions to energies of about 2-3 MeV, where the DD reactivity is on a par of that of the DT reaction. Fast deuterium energy distributions were derived from analysis of NES data and confirm acceleration of deuterium beam ions up to energies around 3 MeV, in agreement with theoretical predictions. The high neutron rates allowed for observations of changes in the fast deuterium populations on a time scale of 50 ms. Correlations were seen between fast deuterium ions at different energies and magnetohydrodynamic activities, such as monster sawtooth crashes and toroidal Alfven eigenmodes.

Collaboration


Dive into the C. Hellesen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge