M. Gatu Johnson
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Gatu Johnson.
Review of Scientific Instruments | 2006
M. Gatu Johnson; L. Giacomelli; Anders Hjalmarsson; M. Weiszflog; E. Andersson Sundén; S. Conroy; G. Ericsson; C. Hellesen; Jan Källne; E. Ronchi; Henrik Sjöstrand; G. Gorini; M. Tardocchi; A. Murari; S. Popovichev; J. Sousa; R. C. Pereira; A. Combo; N. Cruz; Jet-Efda Contributors
A time-of-flight neutron spectrometer (TOFOR) has been developed to measure the 2.45 MeV d+d→3He+n neutron emission from D plasmas. The TOFOR design features the capability to operate at high rates in the 100 kHz range, data collection with fast time digitizing and storing, and monitoring of the signals from the scintillation detectors used. This article describes the principles of the instrument and its installation at JET and presents preliminary data to illustrate the TOFOR performance as a neutron emission spectroscopy diagnostic.
Review of Scientific Instruments | 2012
M. Gatu Johnson; J. A. Frenje; D. T. Casey; C. K. Li; F. H. Séguin; R. D. Petrasso; R. C. Ashabranner; R. Bionta; D. L. Bleuel; E. Bond; J. A. Caggiano; A. Carpenter; C. Cerjan; T. J. Clancy; T. Doeppner; M. J. Eckart; M. J. Edwards; S. Friedrich; S. H. Glenzer; S. W. Haan; Edward P. Hartouni; R. Hatarik; S. P. Hatchett; O. S. Jones; G. A. Kyrala; S. Le Pape; R. A. Lerche; O. L. Landen; T. Ma; A. J. Mackinnon
DT neutron yield (Y(n)), ion temperature (T(i)), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y(n), T(i), and dsr. From the measured dsr value, an areal density (ρR) is determined through the relationship ρR(tot) (g∕cm(2)) = (20.4 ± 0.6) × dsr(10-12 MeV). The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel ρR) and Y(n), has improved almost two orders of magnitude since the first shot in September, 2010.
Nuclear Fusion | 2010
C. Hellesen; M. Gatu Johnson; E. Andersson Sundén; S. Conroy; G. Ericsson; Jacob Eriksson; G. Gorini; Thomas Johnson; V. Kiptily; S. D. Pinches; S. E. Sharapov; Henrik Sjöstrand; M. Nocente; M. Tardocchi; M. Weiszflog
Ion cyclotron radio frequency (ICRF) heating can produce fast ion populations with energies reaching up to several megaelectronvolts. Here, we present unique measurements of fast ion distributions from an experiment with 3rd harmonic ICRF heating on deuterium beams using neutron emission spectroscopy (NES). From the experiment, very high DD neutron rates were observed, using only modest external heating powers. This was attributed to acceleration of deuterium beam ions to energies up to about 2-3 MeV, where the DD reactivity is on a par with that of the DT reaction. The high neutron rates allowed for observations of changes in the fast deuterium energy distribution on a time scale of 50 ms. Clear correlations were seen between fast deuterium ions in different energy ranges and magnetohydrodynamic activities, such as monster sawteeth and toroidal Alfven eigen modes (TAE). Specifically, NES data showed that the number of deuterons in the region between 1 and 1.5 MeV were decaying significantly during strong TAE activity, while ions with lower energies around 500 keV were not affected. This was attributed to resonances with the TAE modes.
Nuclear Fusion | 2012
M. Nocente; M. Tardocchi; V. Kiptily; Patrick Blanchard; I.N. Chugunov; S. Conroy; T. Edlington; A.M. Fernandes; G. Ericsson; M. Gatu Johnson; D. Gin; G. Grosso; C. Hellesen; K. Kneupner; E. Lerche; A. Murari; A. Neto; R.C. Pereira; E. Perelli Cippo; S. E. Sharapov; A. E. Shevelev; J. Sousa; D. B. Syme; D. Van Eester; G. Gorini; Jet-Efda Contributors
High-resolution ?-ray measurements were carried out on the Joint European Torus (JET) in an experiment aimed at accelerating 4He ions in the MeV range by coupling third harmonic radio frequency heating to an injected 4He beam. For the first time, Doppler broadening of ?-ray peaks from the 12C(d, p?)13C and 9Be(?, n?)12C reactions was observed and interpreted with dedicated Monte Carlo codes based on the detailed nuclear physics of the processes. Information on the confined 4He and deuteron energy distribution was inferred, and confined 4He ions with energies as high as 6?MeV were assessed. A signature of MHD activity in ?-ray traces was also detected. The reported results have a bearing on diagnostics for fast ions in the MeV range in next step fusion devices.
Nuclear Fusion | 2013
J. A. Frenje; R. Bionta; E. Bond; J. A. Caggiano; D. T. Casey; Charles Cerjan; J. Edwards; M. J. Eckart; D. N. Fittinghoff; S. Friedrich; V. Yu. Glebov; S. H. Glenzer; Gary P. Grim; S. W. Haan; R. Hatarik; S. P. Hatchett; M. Gatu Johnson; O. S. Jones; J. D. Kilkenny; J. P. Knauer; O. L. Landen; R. J. Leeper; S. Le Pape; R. A. Lerche; C. K. Li; A. J. Mackinnon; J. M. McNaney; F. E. Merrill; M. J. Moran; David H. Munro
The neutron spectrum from a cryogenically layered deuterium?tritium (dt) implosion at the National Ignition Facility (NIF) provides essential information about the implosion performance. From the measured primary-neutron spectrum (13?15?MeV), yield (Yn) and hot-spot ion temperature (Ti) are determined. From the scattered neutron yield (10?12?MeV) relative to Yn, the down-scatter ratio, and the fuel areal density (?R) are determined. These implosion parameters have been diagnosed to an unprecedented accuracy with a suite of neutron-time-of-flight spectrometers and a magnetic recoil spectrometer implemented in various locations around the NIF target chamber. This provides good implosion coverage and excellent measurement complementarity required for reliable measurements of Yn, Ti and ?R, in addition to ?R asymmetries. The data indicate that the implosion performance, characterized by the experimental ignition threshold factor, has improved almost two orders of magnitude since the first shot taken in September 2010. ?R values greater than 1?g?cm?2 are readily achieved. Three-dimensional semi-analytical modelling and numerical simulations of the neutron-spectrometry data, as well as other data for the hot spot and main fuel, indicate that a maximum hot-spot pressure of ?150?Gbar has been obtained, which is almost a factor of two from the conditions required for ignition according to simulations. Observed Yn are also 3?10 times lower than predicted. The conjecture is that the observed pressure and Yn deficits are partly explained by substantial low-mode ?R asymmetries, which may cause inefficient conversion of shell kinetic energy to hot-spot thermal energy at stagnation.
Nuclear Fusion | 2013
C. Hellesen; M. Gatu Johnson; E. Andersson Sundén; S. Conroy; G. Ericsson; Jacob Eriksson; Henrik Sjöstrand; M. Weiszflog; Thomas Johnson; G. Gorini; M. Nocente; M. Tardocchi; V. Kiptily; S. D. Pinches; S. E. Sharapov
The fast-ion distribution from third harmonic ion cyclotron resonance frequency (ICRF) heating on the Joint European Torus is studied using neutron emission spectroscopy with the time-of-flight spectrometer TOFOR. The energy dependence of the fast deuteron distribution function is inferred from the measured spectrum of neutrons born in DD fusion reactions, and the inferred distribution is compared with theoretical models for ICRF heating. Good agreements between modelling and measurements are seen with clear features in the fast-ion distribution function, that are due to the finite Larmor radius of the resonating ions, replicated. Strong synergetic effects between ICRF and neutral beam injection heating were also seen. The total energy content of the fast-ion population derived from TOFOR data was in good agreement with magnetic measurements for values below 350 kJ.
Nuclear Fusion | 2010
C. Hellesen; M. Gatu Johnson; E. Anderson Sunden; S. Conroy; G. Ericsson; E. Ronchi; Henrik Sjöstrand; M. Weiszflog; G. Gorini; M. Tardocchi; Thomas Johnson; V. Kiptily; S. D. Pinches; S. E. Sharapov
For the first time, the neutron emission from JET plasmas heated with combined deuterium neutral beam injection and third harmonic ion cyclotron radio frequency heating have been studied with neutron emission spectroscopy (NES). Very high DD neutron rates were observed with only modest external heating powers, which was attributed to acceleration of deuterium beam ions to energies of about 2-3 MeV, where the DD reactivity is on a par of that of the DT reaction. Fast deuterium energy distributions were derived from analysis of NES data and confirm acceleration of deuterium beam ions up to energies around 3 MeV, in agreement with theoretical predictions. The high neutron rates allowed for observations of changes in the fast deuterium populations on a time scale of 50 ms. Correlations were seen between fast deuterium ions at different energies and magnetohydrodynamic activities, such as monster sawtooth crashes and toroidal Alfven eigenmodes.
Review of Scientific Instruments | 2013
D. T. Casey; J. A. Frenje; M. Gatu Johnson; F. H. Séguin; C. K. Li; R. D. Petrasso; V. Yu. Glebov; Joseph Katz; J. Magoon; D. D. Meyerhofer; T. C. Sangster; M. J. Shoup; J. Ulreich; R. C. Ashabranner; R. Bionta; A. Carpenter; B. Felker; H. Y. Khater; S. LePape; A. J. Mackinnon; M. McKernan; M. J. Moran; J. R. Rygg; M. Yeoman; R. A. Zacharias; R. J. Leeper; K. Fletcher; M. Farrell; D. Jasion; J. D. Kilkenny
The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.
Plasma Physics and Controlled Fusion | 2010
M. Gatu Johnson; S. Conroy; Marco Cecconello; G. Ericsson; M. Gherendi; C. Hellesen; Anders Hjalmarsson; A. Murari; S. Popovichev; E. Ronchi; M. Weiszflog; V. Zoita
In this paper, the scattered and direct neutron fluxes in the line of sight (LOS) of the TOFOR neutron spectrometer at JET are simulated and the simulations compared with measurement results. The Monte Carlo code MCNPX is used in the simulations, with a vessel material composition obtained from the JET drawing office and neutron emission profiles calculated from TRANSP simulations of beam ion density profiles. The MCNPX simulations show that the material composition of the scattering wall has a large effect on the shape of the scattered neutron spectrum. Neutron source profile shapes as well as radial and vertical source displacements in the TOFOR LOS are shown to only marginally affect the scatter, while having a larger impact on the direct neutron flux. A matrix of simulated scatter spectra for mono-energetic source neutrons iscreatedwhichisfoldedwithanapproximationofthesourcespectrumforeach JETpulsestudiedtoobtainascattercomponentforuseinthedataanalysis. The scatter components thus obtained are shown to describe the measured data. It is alsodemonstratedthatthescatteredfluxisapproximatelyconstantrelativetothe total neutron yield as measured with the JET fission chambers, while there is a largerspreadinthedirectflux,consistentwithsimulations. Thesimulatedeffect on the integrated scattered/direct ratio of an increase with movements outward along the radial direction and a drop at higher values of the vertical plasma
Review of Scientific Instruments | 2006
Henrik Sjöstrand; L. Giacomelli; E. Andersson Sundén; S. Conroy; G. Ericsson; M. Gatu Johnson; C. Hellesen; Anders Hjalmarsson; J. Källne; E. Ronchi; M. Weiszflog; G. Wikström; G. Gorini; M. Tardocchi; A. Murari; G. Kaveney; S. Popovichev; J. Sousa; R. C. Pereira; A. Combo; N. Cruz; Jet-Efda Contributors
The MPRu is an upgrade of the magnetic proton recoil (MPR) neutron spectrometer that has been used for 14MeV DT neutron measurements at JET during the DTE1 (1997) and TTE (2003) campaigns. In this contribution the principles of the MPR and its upgrade will be presented. The MPRu allows measurements of the full range of fusion relevant neutron energies, 1.5–18MeV, including the 14MeV DT neutrons, now with significantly reduced background, and also new high-quality measurements of the 2.5MeV DD neutron component. This improvement is made possible by the use of a new proton recoil detector in combination with custom-built transient recorder cards. The importance of these instrumental improvements for extending the use of the MPRu in diagnosis of D and DT plasmas will be discussed. Results from the first 2.5MeV measurements performed with the MPRu during JET high level commissioning in April 2006 are presented.