C. J. van der Veen
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. J. van der Veen.
Geophysical Research Letters | 2007
C. J. van der Veen
[1]xa0Propagation of water-filled crevasses through glaciers is investigated based on the linear elastic fracture mechanics approach. A crevasse will penetrate to the depth where the stress intensity factor at the crevasse tip equals the fracture toughness of glacier ice. A crevasse subjected to inflow of water will continue to propagate downward with the propagation speed controlled primarily by the rate of water injection. While the far-field tensile stress and fracture toughness determine where crevasses can form, once initiated, the rate of water-driven crevasse propagation is nearly independent of these two parameters. Thus, rapid transfer of surface meltwater to the bed of a cold glacier requires abundant ponding at the surface to initiate and sustain full thickness fracturing before refreezing occurs.
Journal of Glaciology | 2010
F. M. Nick; C. J. van der Veen; Andreas Vieli; Douglas I. Benn
We present results from numerical ice-flow models that include calving criteria based on penetration of surface and basal crevasses, which in turn is a function of longitudinal strain rates near the glacier front. The position of the calving front is defined as the point where either (1) surface crevasses reach the waterline (model CDw), or (2) surface and basal crevasses penetrate the full thickness of the glacier (model CD). For comparison with previous studies, results are also presented for a height-above-buoyancy calving model. Qualitatively, both models CDw and CD produce similar behaviour. Unlike previous models for calving, the new calving criteria are applicable to both grounded termini and floating ice shelves and tongues. The numerical ice-flow model is applied to an idealized geometry characteristic of marine outlet glaciers. Results indicate that grounding-line dynamics are less sensitive to basal topography than previously suggested. Stable grounding-line positions can be obtained even on a reverse bed slope with or without floating termini. The proposed calving criteria also allow calving losses to be linked to surface melt and therefore climate. In contrast to previous studies in which calving rate or position of the terminus is linked to local water depth, the new calving criterion is able to produce seasonal cycles of retreat and advance as observed for Greenland marine outlet glaciers. The contrasting dynamical behaviour and stability found for different calving models suggests that a realistic parameterization for the process of calving is crucial for any predictions of marine outlet glacier change.
Journal of Glaciology | 2008
Bea M. Csatho; Toni Schenk; C. J. van der Veen; William B. Krabill
Rapid thinning and velocity increase on major Greenland outlet glaciers during the last two decades may indicate that these glaciers became unstable as a consequence of the Jakobshavn effect (Hughes, 1986), with terminus retreat leading to increased discharge from the interior and consequent further thinning and retreat. To assess whether recent trends deviate from longer-term behavior, we measured glacier surface elevations and terminus positions for Jakobshavn Isbrae, West Greenland, using historical photographs acquired in 1944, 1953, 1959, 1964 and 1985. These results were combined with data from historical records, aerial photographs, ground surveys, airborne laser altimetry and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the Little Ice Age (LIA). We identified three periods of rapid thinning since the LIA: 1902-13, 1930-59 and 1999-present. During the first half of the 20th century, the calving front appears to have been grounded and it started to float during the late 1940s. The south and north tributaries exhibit different behavior. For example, the north tributary was thinning between 1959 and 1985 during a period when the calving front was stationary and the south tributary was in balance. The record of intermittent thinning, combined with changes in ice-marginal extent and position of the calving front, together with changes in velocity, imply that the behavior of the lower parts of this glacier represents a complex ice-dynamical response to local climate forcings and interactions with drainage from the interior.
Journal of Glaciology | 2011
C. J. van der Veen; J.C. Plummer; Leigh Asher Stearns
This is the publishers version, also available electronically from http://www.ingentaconnect.com/.
Journal of Glaciology | 2005
Leigh Asher Stearns; Kenneth C. Jezek; C. J. van der Veen
This is the publishers version, also available electronically from http://www.ingentaconnect.com.
Journal of Glaciology | 2006
Charles F. Raymond; Ginny A. Catania; N. A. Nereson; C. J. van der Veen
Surface-based ice-penetrating radar profiles were made across the active north margin (the Snake) of the upper part of Whillans Ice Stream (formerly Ice Stream B, branch B2), West Antarctica, at three locations. Low frequency (about 2 MHz) and the ground deployment of the radar allowed penetration through the near-surface zone of fracturing to detect internal layering and bed reflection characteristics on continuous profiles spanning from the slow-moving ice of Engelhardt Ridge well into the chaotic zone of the shear margin. Internal layers were tracked beneath the chaotic zone, where they are warped but remain continuous. The energy returned from internal layers showed no systematic changes associated with the transition from the undisturbed surface of the slow-moving ice into the fractured surface of the shear margin, thus indicating little effect from the surface crevasses on the penetration of the radar signal. Based on this calibration of the near-surface effects and corrections for path length, spreading and attenuation, we examine the spatial variation of bed reflectivity. Low bed reflectivity found under Engelhardt Ridge extends under the chaotic zone of the margin into fast-moving ice. We argue that the fast motion in a band along the margin is mediated by processes other than deformation of thick dilated till that is the source of lubrication allowing fast motion in the interior of the ice stream.
Journal of Geophysical Research | 2007
Faezeh M. Nick; C. J. van der Veen; J. Oerlemans
[1]xa0A one-dimensional numerical ice flow model is used to study the advance of a tidewater glacier into deep water. Starting with ice-free conditions, the model simulates glacier growth at higher elevations followed by advance on land to the head of the fjord. Once the terminus reaches a bed below sea level, calving is initiated. A series of simulations was carried out with various boundary conditions and parameterizations of the annual mass balance. The results suggest that irrespective of the calving criterion and accumulation rate in the catchment area, it is impossible for the glacier terminus to advance into deeper water (>300 m water depth) unless sedimentation at the glacier front is included. The advance of Columbia Glacier, Alaska, is reproduced by the model by including “conveyor belt” recycling of subglacial sediment and the formation of a sediment bank at the glacier terminus. Results indicate slow advance through the deep fjord and faster advance in shallow waters approaching the terminal moraine shoal and the mouth of the fjord.
Journal of Geophysical Research | 2009
C. J. van der Veen; Young-sik Ahn; Beata Csatho; Ellen Mosley-Thompson; William B. Krabill
[1]xa0Surface roughness, defined as the standard deviation of small-scale elevation fluctuations from the linear trend over 0.5 km, can be estimated from high-resolution airborne laser altimetry. Here we present results for the northern half of the Greenland Ice Sheet using laser data collected in May 1995. Roughness is smallest in the central region straddling the ice divide, increases in amplitude toward the coast, and appears to be correlated with slope of the ice surface. For most of the study region surface roughness is 8 cm or less (<2.5 cm water equivalent). In smaller regions associated with fast flow, larger values are found. Comparison of the size of small-scale topographic disturbances with the spatial noise estimated from five closely spaced ice cores drilled in northwest Greenland shows good agreement. Similar correspondence was found earlier using nine ice cores from the Summit region. These results indicate that the airborne laser altimeter provides an efficient platform for characterizing the statistical nature of the snow surface over large areas of the polar ice sheets.
Journal of Glaciology | 2010
Lucas H. Beem; Ken C. Jezek; C. J. van der Veen
Basal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice streams and the subglacial hydrology, which remain insufficiently described by glaciological theory. Combining measurements and analytic modeling, we identify two regions where basal meltwater is produced beneath Whillans Ice Stream, West Antarctica. Downstream of the onset of shear crevasses, strong basal melt (20-50 mm a -1 )i s concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3-7 mm a -1 across the width of the ice stream. We show that the transition in melt-rate patterns is coincident with the onset of shear margin crevassing and streaming flow and related to the development of significant lateral shear resistance, which reorganizes the resistive stress regime and induces a concentration of basal resistance adjacent to the shear margin. Finally, we discuss how downstream freeze-on in the ice-stream center coupled with melt beneath the shear margin might result in a slowing but widening ice stream.
Geophysical Research Letters | 2007
C. J. van der Veen; Timothy E. Leftwich; R. R. B. von Frese; Bea M. Csatho; J. Li
[1]xa0Many of the outlet glaciers in Greenland overlie deep and narrow trenches cut into the bedrock. It is well known that pronounced topography intensifies the geothermal heat flux in deep valleys and attenuates this flux on mountains. Here we investigate the magnitude of this effect for two subglacial trenches in Greenland. Heat flux variations are estimated for idealized geometries using solutions for plane slopes derived by Lachenbruch (1968). It is found that for channels such as the one under Jakobshavn Isbrae, topographic effects may increase the local geothermal heat flux by as much as 100%.