Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. K. Phillips is active.

Publication


Featured researches published by C. K. Phillips.


Physics of Plasmas | 2008

High Harmonic Fast Wave Heating Efficiency Enhancement and Current Drive at Longer Wavelength on the National Spherical Torus Experiment

J. C. Hosea; R.E. Bell; Benoit P. Leblanc; C. K. Phillips; G. Taylor; Ernest J. Valeo; J. R. Wilson; E. F. Jaeger; P. M. Ryan; J. B. Wilgen; H. Yuh; F. M. Levinton; S.A. Sabbagh; K. Tritz; J. Parker; P.T. Bonoli; R.W. Harvey; Nstx Team

High harmonic fast wave heating and current drive (CD) are being developed on the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] for supporting startup and sustainment of the ST plasma. Considerable enhancement of the core heating efficiency (η) from 44% to 65% has been obtained for CD phasing of the antenna (strap-to-strap φ = -90o, kφ = -8 m-1) by increasing the magnetic field from 4.5 kG to 5.5 kG. This increase in efficiency is strongly correlated to moving the location of the onset density for perpendicular fast wave propagation (nonset ∝ ΒΦ× k|| 2/w) away from the antenna face and wall, and hence reducing the propagating surface wave fields. RF waves propagating close to the wall at lower BΦ and k|| can enhance power losses from both the parametric decay instability (PDI) and wave dissipation in sheaths and structures around the machine. The improved efficiency found here is attributed to a reduction in the latter, as PDI losses are little changed at the higher magnetic field. Under these conditions of higher coupling efficiency, initial measurements of localized CD effects have been made and compared with advanced RF code simulations


Physics of Plasmas | 2008

Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulation

P.T. Bonoli; J. Ko; R.R. Parker; A.E. Schmidt; G. Wallace; John Wright; C. Fiore; A. Hubbard; James H. Irby; E. Marmar; M. Porkolab; D. Terry; S.M. Wolfe; S.J. Wukitch; J. R. Wilson; S. Scott; Ernest J. Valeo; C. K. Phillips; R. W. Harvey

Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0∕PLH≈2.5±0.2×1019(A∕W∕m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker–Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the pres...


Fusion Science and Technology | 2007

Wave-particle studies in the ion cyclotron and lower hybrid ranges of frequencies in alcator C-mod

P.T. Bonoli; R.R. Parker; S.J. Wukitch; Y. Lin; M. Porkolab; John Wright; E. Edlund; T. Graves; L. Lin; J. Liptac; A. Parisot; A. Schmidt; V. Tang; W. Beck; R. Childs; M. Grimes; David Gwinn; D. Johnson; J. Irby; A. Kanojia; P. Koert; S. Marazita; E. Marmar; D. Terry; R. Vieira; G. Wallace; J. Zaks; S. Bernabei; C. Brunkhorse; R. Ellis

Abstract This paper reviews the physics and technology of wave-particle-interaction experiments in the ion cyclotron range of frequencies (ICRF) and the lower hybrid (LH) range of frequencies (LHRF) on the Alcator C-Mod tokamak. Operation of fixed frequency (80 MHz) and tunable (40- to 80-MHz) ICRF transmitters and the associated transmission system is described. Key fabrication issues that were solved in order to operate a four-strap ICRF antenna in the compact environment of C-Mod are discussed in some detail. ICRF heating experiments utilizing the hydrogen (H) and helium-3 (3He) minority heating schemes are described, and data are presented demonstrating an overall heating efficiency of 70 to 90% for the (H) minority scheme and somewhat lower efficiency for (3He) minority heating. Mode conversion electron heating experiments in D(3He), D(H), and H(3He) discharges are also reported as well as simulations of these experiments using an advanced ICRF full-wave solver. Measurements of mode-converted ion cyclotron waves and ion Bernstein waves using a phase contrast imaging diagnostic are presented and compared with the predictions of a synthetic diagnostic code that utilizes wave electric fields from a full-wave solver. The physics basis of the LH current profile control program on Alcator C-Mod is also presented. Computer simulations using a two-dimensional (velocity space) Fokker Planck solver indicate that ~200 kA of LH current can be driven in low-density H-mode discharges on C-Mod with ~3 MW of LHRF power. It is shown that this off-axis LH current drive can be used to create discharges with nonmonotonic profiles of the current density and reversed shear. An advanced tokamak operating regime near the ideal no-wall β limit is described for C-Mod, where ~70% of the current is driven through the bootstrap effect. The LH power is coupled to C-Mod through a waveguide launcher consisting of four rows (vertically) with 24 guides per row (toroidally). A detailed description of the LH launcher fabrication is given in this paper along with initial operation results.


Physics of Plasmas | 2001

Initial physics results from the National Spherical Torus Experiment

S.M. Kaye; M.G. Bell; R. E. Bell; J. Bialek; T. Bigelow; M. Bitter; P.T. Bonoli; D. S. Darrow; Philip C. Efthimion; J.R. Ferron; E.D. Fredrickson; D.A. Gates; L. Grisham; J. Hosea; D.W. Johnson; R. Kaita; S. Kubota; H.W. Kugel; Benoit P. Leblanc; R. Maingi; J. Manickam; T. K. Mau; R. J. Maqueda; E. Mazzucato; J. Menard; D. Mueller; B.A. Nelson; N. Nishino; M. Ono; F. Paoletti

The mission of the National Spherical Torus Experiment (NSTX) is to extend the understanding of toroidal physics to low aspect ratio (R/a approximately equal to 1.25) in low collisionality regimes. NSTX is designed to operate with up to 6 MW of High Harmonic Fast Wave (HHFW) heating and current drive, 5 MW of Neutral Beam Injection (NBI) and Co-Axial Helicity Injection (CHI) for non-inductive startup. Initial experiments focused on establishing conditions that will allow NSTX to achieve its aims of simultaneous high-bt and high-bootstrap current fraction, and to develop methods for non-inductive operation, which will be necessary for Spherical Torus power plants. Ohmic discharges with plasma currents up to 1 MA and with a range of shapes and configurations were produced. Density limits in deuterium and helium reached 80% and 120% of the Greenwald limit respectively. Significant electron heating was observed with up to 2.3 MW of HHFW. Up to 270 kA of toroidal current for up to 200 msec was produced noninductively using CHI. Initial NBI experiments were carried out with up to two beam sources (3.2 MW). Plasmas with stored energies of up to 140 kJ and bt =21% were produced.


Physics of Plasmas | 2006

Self-consistent full-wave and Fokker-Planck calculations for ion cyclotron heating in non-Maxwellian plasmas

E. F. Jaeger; Lee A. Berry; S. D. Ahern; Richard Frederick Barrett; D. B. Batchelor; Mark Dwain Carter; Eduardo F. D'Azevedo; R. D. Moore; R.W. Harvey; J. R. Myra; D. A. D’Ippolito; R. J. Dumont; C. K. Phillips; H. Okuda; David Smithe; P.T. Bonoli; John Wright; M. Choi

Magnetically confined plasmas can contain significant concentrations of nonthermal plasma particles arising from fusion reactions, neutral beam injection, and wave-driven diffusion in velocity space. Initial studies in one-dimensional and experimental results show that nonthermal energetic ions can significantly affect wave propagation and heating in the ion cyclotron range of frequencies. In addition, these ions can absorb power at high harmonics of the cyclotron frequency where conventional two-dimensional global-wave models are not valid. In this work, the all-orders global-wave solver AORSA [E. F. Jaeger et al., Phys. Rev. Lett. 90, 195001 (2003)] is generalized to treat non-Maxwellian velocity distributions. Quasilinear diffusion coefficients are derived directly from the wave fields and used to calculate energetic ion velocity distributions with the CQL3D Fokker-Planck code [R. W. Harvey and M. G. McCoy, Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear ...


Physics of Plasmas | 1999

Generation of plasma rotation by ion cyclotron resonance heating in tokamaks

Choong-Seock Chang; C. K. Phillips; R. B. White; S. J. Zweben; P.T. Bonoli; J. E. Rice; M. Greenwald; J.S. deGrassie

A physical mechanism for generation of a plasma rotation and radial electric field by ion cyclotron resonance heating (ICRH) is presented in a tokamak geometry. By breaking the omnigenity of resonant ion orbits, ICRH can induce a nonambipolar minor-radial transport of resonant ions. This yields a radial charge separation, a modification to radial electric field Er, and the generation of plasma rotation. It is estimated that the ICRH fast-wave power available in the present-day tokamak experiments can be large enough to give a significant modification to plasma rotation.


Nuclear Fusion | 2014

Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U

N. Bertelli; E. F. Jaeger; J. C. Hosea; C. K. Phillips; Lee A. Berry; S.P. Gerhardt; D.L. Green; Benoit P. Leblanc; R.J. Perkins; P.M. Ryan; G. Taylor; Ernest J. Valeo; J. R. Wilson

Full wave simulations of fusion plasmas show a direct correlation between the location of the fast-wave cut-off, radiofrequency (RF) field amplitude in the scrape-off layer (SOL) and the RF power losses in the SOL observed in the National Spherical Torus eXperiment (NSTX). In particular, the RF power losses in the SOL increase significantly when the launched waves transition from evanescent to propagating in that region. Subsequently, a large amplitude electric field occurs in the SOL, driving RF power losses when a proxy collisional loss term is added. A 3D reconstruction of absorbed power in the SOL is presented showing agreement with the RF experiments in NSTX. Loss predictions for the future experiment NSTX-Upgrade (NSTX-U) are also obtained and discussed.


Nuclear Fusion | 2005

Overview of the Alcator C-Mod program

M. Greenwald; D. Andelin; N. Basse; S. Bernabei; P.T. Bonoli; B. Böse; C. Boswell; Ronald Bravenec; B. A. Carreras; I. Cziegler; E. Edlund; D. Ernst; C. Fasoli; M. Ferrara; C. Fiore; R. Granetz; O. Grulke; T. C. Hender; J. Hosea; D.H. Howell; A. Hubbard; J.W. Hughes; Ian H. Hutchinson; A. Ince-Cushman; James H. Irby; B. LaBombard; R. J. LaHaye; L. Lin; Y. Lin; B. Lipschultz

Research on the Alcator C-Mod tokamak has emphasized RF heating, self-generated flows, momentum transport, scrape-off layer (SOL) turbulence and transport and the physics of transport barrier transitions, stability and control. The machine operates with P-RF up to 6 MW corresponding to power densities on the antenna of 10 MW m(-2). Analysis of rotation profile evolution, produced in the absence of external drive, allows transport of angular momentum in the plasma core to be computed and compared between various operating regimes. Momentum is clearly seen diffusing and convecting from the plasma edge on time scales similar to the energy confinement time and much faster than neo-classical transport. SOL turbulence and transport have been studied with fast scanning electrostatic probes situated at several poloidal locations and with gas puff imaging. Strong poloidal asymmetries are found in profiles and fluctuations, confirming the essential ballooning character of the turbulence and transport. Plasma topology has a dominant effect on the magnitude and direction of both core rotation and SOL flows. The correlation of self-generated plasma flows and topology has led to a novel explanation for the dependence of the H-mode power threshold on the del B drift direction. Research into internal transport barriers has focused on control of the barrier strength and location. The foot of the barrier could be moved to larger minor radius by lowering q or B-T. The barriers, which are produced in C-Mod by off-axis RF heating, can be weakened by the application of on-axis power. Gyro-kinetic simulations suggest that the control mechanism is due to the temperature dependence of trapped electron modes which are destabilized by the large density gradients. A set of non-axisymmetric coils was installed allowing intrinsic error fields to be measured and compensated. These also enabled the determination of the mode locking threshold and, by comparison with data from other machines, provided the first direct measurement of size scaling for the threshold. The installation of a new inboard limiter resulted in the reduction of halo currents following disruptions. This effect can be understood in terms of the change in plasma contact with the altered geometry during vertical displacement of the plasma column. Unstable Alfven eigenmodes (AE) were observed in low-density, high-power ICRF heated plasmas. The damping rate of stable AEs was investigated with a pair of active MHD antennae.


Physics of Plasmas | 1998

Ion cyclotron range of frequencies heating and flow generation in deuterium–tritium plasmas

J. R. Wilson; R.E. Bell; S. Bernabei; K. W. Hill; J. C. Hosea; Benoit P. Leblanc; R. Majeski; R. Nazikian; M. Ono; C. K. Phillips; G. Schilling; S. von Goeler; C.E. Bush; G. R. Hanson

Recent radio-frequency heating experiments on the Tokamak Fusion Test Reactor (TFTR) [Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] have focused on developing tools for both pressure and current profile control in deuterium–tritium (DT) plasmas. A new antenna was added to investigate pressure profile control utilizing direct ion Bernstein wave (IBW) heating. This was the first time direct IBW heating was explored on TFTR. Plasma heating and driven poloidal flows are observed. Previously heating and current drive via mode-converted IBW waves had been demonstrated in non-DT plasmas but efforts in DT plasmas had been unsuccessful. This lack of success had been ascribed to the presence of a small 7Li minority ion population. In the most recent experiments 6Li was used exclusively for machine conditioning and mode-conversion heating consistent with theory is now observed in DT plasmas.


Physics of fluids. B, Plasma physics | 1992

Ion cyclotron range of frequencies stabilization of sawteeth on Tokamak Fusion Test Reactor

C. K. Phillips; J. Hosea; E. Marmar; M. W. Phillips; J. Snipes; J. E. Stevens; J. Terry; J. R. Wilson; M.G. Bell; M. Bitter; R. Boivin; C. E. Bush; C. Z. Cheng; D. S. Darrow; E.D. Fredrickson; R. Goldfinger; G. W. Hammett; K. W. Hill; D. J. Hoffman; W. Houlberg; H. Hsuan; M. Hughes; D. Jassby; D. McCune; K. M. McGuire; Y. Nagayama; D. K. Owens; H. Park; A.T. Ramsey; G. Schilling

Results obtained from experiments utilizing high‐power ion cyclotron range of frequencies (ICRF) heating to stabilize sawtooth oscillations on Tokamak Fusion Test Reactor (TFTR) [Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] are reviewed. The key observations include existence of a minimum ICRF power required to achieve stabilization, a dependence of the stabilization threshold on the relative size of the ICRF power deposition profile to the q=1 volume, and a peaking of the equilibrium pressure and current profiles during sawtooth‐free phases of the discharges. In addition, preliminary measurements of the poloidal magnetic field profile indicate that q on axis decreases to a value of 0.55±0.15 after a sawtooth‐stabilized period of ∼0.5 sec has transpired. The results are discussed in the context of theory, which suggests that the fast ions produced by the ICRF heating suppress sawteeth by stabilizing the m=1 magnetohydrodynamic (MHD) instabilities believed to be the trigger for the sawt...

Collaboration


Dive into the C. K. Phillips's collaboration.

Top Co-Authors

Avatar

J. R. Wilson

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. C. Hosea

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Benoit P. Leblanc

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Majeski

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Taylor

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. Bernabei

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. F. Jaeger

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

P.T. Bonoli

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. M. Ryan

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge