Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. L. Laxmipathi Gowda is active.

Publication


Featured researches published by C. L. Laxmipathi Gowda.


3 Biotech;5,(2014) Pagination 355,377 | 2015

Plant growth promoting rhizobia: challenges and opportunities

Subramaniam Gopalakrishnan; Arumugam Sathya; Rajendran Vijayabharathi; Rajeev K. Varshney; C. L. Laxmipathi Gowda; Lakshmanan Krishnamurthy

Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.


DNA Research | 2015

Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea.

Shouvik Das; Hari D. Upadhyaya; Deepak Bajaj; Alice Kujur; Saurabh Badoni; Laxmi; Vinod Kumar; Shailesh Tripathi; C. L. Laxmipathi Gowda; Shivali Sharma; Sube Singh; Akhilesh K. Tyagi; Swarup K. Parida

A rapid high-resolution genome-wide strategy for molecular mapping of major QTL(s)/gene(s) regulating important agronomic traits is vital for in-depth dissection of complex quantitative traits and genetic enhancement in chickpea. The present study for the first time employed a NGS-based whole-genome QTL-seq strategy to identify one major genomic region harbouring a robust 100-seed weight QTL using an intra-specific 221 chickpea mapping population (desi cv. ICC 7184 × desi cv. ICC 15061). The QTL-seq-derived major SW QTL (CaqSW1.1) was further validated by single-nucleotide polymorphism (SNP) and simple sequence repeat (SSR) marker-based traditional QTL mapping (47.6% R2 at higher LOD >19). This reflects the reliability and efficacy of QTL-seq as a strategy for rapid genome-wide scanning and fine mapping of major trait regulatory QTLs in chickpea. The use of QTL-seq and classical QTL mapping in combination narrowed down the 1.37 Mb (comprising 177 genes) major SW QTL (CaqSW1.1) region into a 35 kb genomic interval on desi chickpea chromosome 1 containing six genes. One coding SNP (G/A)-carrying constitutive photomorphogenic9 (COP9) signalosome complex subunit 8 (CSN8) gene of these exhibited seed-specific expression, including pronounced differential up-/down-regulation in low and high seed weight mapping parents and homozygous individuals during seed development. The coding SNP mined in this potential seed weight-governing candidate CSN8 gene was found to be present exclusively in all cultivated species/genotypes, but not in any wild species/genotypes of primary, secondary and tertiary gene pools. This indicates the effect of strong artificial and/or natural selection pressure on target SW locus during chickpea domestication. The proposed QTL-seq-driven integrated genome-wide strategy has potential to delineate major candidate gene(s) harbouring a robust trait regulatory QTL rapidly with optimal use of resources. This will further assist us to extrapolate the molecular mechanism underlying complex quantitative traits at a genome-wide scale leading to fast-paced marker-assisted genetic improvement in diverse crop plants, including chickpea.


Euphytica | 2015

Allelic relationships of flowering time genes in chickpea

Pooran M. Gaur; Srinivasan Samineni; Shailesh Tripathi; Rajeev K. Varshney; C. L. Laxmipathi Gowda

Flowering time and crop duration are the most important traits for adaptation of chickpea (Cicer arietinum L.) to different agro-climatic conditions. Early flowering and early maturity enhance adaptation of chickpea to short season environments. This study was conducted to establish allelic relationships of the early flowering genes of ICC 16641, ICC 16644 and ICCV 96029 with three known early flowering genes, efl-1 (ICCV 2), ppd or efl-2 (ICC 5810), and efl-3 (BGD 132). In all cases, late flowering was dominant to early-flowering. The results indicated that the efl-1 gene identified from ICCV 2 was also present in ICCV 96029, which has ICCV 2 as one of the parents in its pedigree. ICC 16641 and ICC 16644 had a common early flowering gene which was not allelic to other reported early flowering genes. The new early flowering gene was designated efl-4. In most of the crosses, days to flowering was positively correlated with days to maturity, number of pods per plant, number of seeds per plant and seed yield per plant and negatively correlated or had no correlation with 100-seed weight. The double-pod trait improved grain yield per plant in the crosses where it delayed maturity. The information on allelic relationships of early flowering genes and their effects on yield and yield components will be useful in chickpea breeding for desired phenology.


The Plant Genome | 2013

Exploiting genomic resources for efficient conservation and use of chickpea, groundnut, and pigeonpea collections for crop improvement

C. L. Laxmipathi Gowda; Hari D. Upadhyaya; Shivali Sharma; Rajeev K. Varshney; Sangam L. Dwivedi

Both chickpea (Cicer arietinum L.) and pigeonpea [Cajanus cajan (L.) Millsp.] are important dietary source of protein while groundnut (Arachis hypogaea L.) is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait‐specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigens genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker‐assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.


Frontiers in Plant Science | 2015

A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea.

Deepak Bajaj; Shouvik Das; Hari D. Upadhyaya; Rajeev Ranjan; Saurabh Badoni; Vinod Kumar; Shailesh Tripathi; C. L. Laxmipathi Gowda; Shivali Sharma; Sube Singh; Akhilesh K. Tyagi; Swarup K. Parida

The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.


Food Security | 2016

Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics

Aravind Kumar Jukanti; C. L. Laxmipathi Gowda; K.N. Rai; V. K. Manga; R. K. Bhatt

Pearl millet is a major cereal in the arid and semi-arid regions of Asia and Africa. It is primarily cultivated for grain production, but its stover is also valued as dry fodder. Pearl millet is resilient to climate change due to its inherent adaptability to drought and high temperatures. It is also tolerant of saline and acid soils, and is well adapted to marginal lands with low productivity. Pearl millet germplasm exhibits large genetic variability for yield components; and various agronomic, adaptation and nutritional traits. Open pollinated varieties and hybrids are two important cultivar options, but higher productivity is realized through hybrids. Pearl millet has fewer pest and disease problems compared to other cereals and is suited to different cropping systems. It is highly responsive to improved crop management practices, as witnessed in parts of India where it is grown as an irrigated summer crop that produces higher yields and better quality grain. Pearl millet has high nutritional value in terms of high levels of energy, dietary fibre, proteins with a balanced amino acid profile, many essential minerals, some vitamins, and antioxidants. These play a significant role in prevention of important human ailments such as diabetes, cancer, cardiovascular and neurodegenerative diseases. There is great potential for harnessing these positive attributes through genetic improvement, improved crop management, and grain processing and food products technologies. These should help to develop greater global awareness of the importance of this crop for food and nutritional security.


African Journal of Biotechnology | 2012

Ensuring biological safety of drinking water at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India

Subramaniam Gopalakrishnan; C. L. Laxmipathi Gowda; M. Prabhakar Reddy; G. V. Ranga Rao; Pagidi Humayun; Vadlamudi Srinivas; C. Srinivas; Om Rupela

Potability of drinking water from various sources at the campus of International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India had been assessed for 17 years (1994 to 2010). All four sources of drinking water at ICRISAT, including Manjeera water (Municipal corporation supplied drinking water), borewell 1, borewell 2 and ICRISAT water (mixture of both Manjeera as well as borewells after treatment), were tested for their potability once in two months by most probable number (MPN) method. The results indicated that water from borewells were not safe to drink without treatment as Escherichia coli was found in 10 and 12 years out of 17 tested years for bore wells 1 and 2, respectively. Manjeera water samples were also found unsafe in two out of the 17 years, whereas ICRISAT water was found safe to drink throughout the study period. This study indicated that even deep borewells (of about 135 ft) can get contaminated, and its water is not safe to drink without treatment, and an additional treatment of municipal water supply is required in order to have safe drinking water. Keywords: Potability, drinking water, Escherichia coli , borewell water, municipal water


Applied Energy | 2010

Biology and genetic improvement of Jatropha curcas L.: A review

B.N. Divakara; H. D. Upadhyaya; S.P. Wani; C. L. Laxmipathi Gowda


Plant Cell and Environment | 2010

Salt sensitivity in chickpea

T. J. Flowers; P M Gaur; C. L. Laxmipathi Gowda; L. Krishnamurthy; Srinivasan Samineni; Kadambot H. M. Siddique; Neil C. Turner; Vincent Vadez; Rajeev K. Varshney; Timothy D. Colmer


한국작물학회 학술발표대회 논문집 | 2008

Allelic Richness and Diversity in Global Composite Collection and Reference Sets in Chickpea (Cicer Arietinum L.).

Hari D Upadhyaya; Sangam L. Dwivedi; Michael Baum; Rajeev K. Varshney; Sripada M. Udupa; C. L. Laxmipathi Gowda; Valiyaparambil Prasanth; Bonnie J Furman; David A. Hoisington; S. Chandra; Sube Singh

Collaboration


Dive into the C. L. Laxmipathi Gowda's collaboration.

Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Sube Singh

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Shivali Sharma

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Srinivasan Samineni

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Shailesh Tripathi

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar

Hari D. Upadhyaya

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

L. Krishnamurthy

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Pooran M. Gaur

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aravind Kumar Jukanti

Central Arid Zone Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge