Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. L. Reddington is active.

Publication


Featured researches published by C. L. Reddington.


Nature | 2013

Large contribution of natural aerosols to uncertainty in indirect forcing.

Kenneth S. Carslaw; L. A. Lee; C. L. Reddington; K. J. Pringle; A. Rap; Piers M. Forster; G. W. Mann; D. V. Spracklen; Matthew T. Woodhouse; Leighton A. Regayre; Jeffrey R. Pierce

The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon, biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not necessarily result in commensurate reductions in the uncertainty of forcing estimates.


Atmospheric Chemistry and Physics | 2013

The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei

L. A. Lee; K. J. Pringle; C. L. Reddington; G. W. Mann; P. Stier; D. V. Spracklen; Jeffrey R. Pierce; Kenneth S. Carslaw

Abstract. Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN). Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.


Science | 2016

Global atmospheric particle formation from CERN CLOUD measurements

Eimear M. Dunne; H. Gordon; Andreas Kürten; Joao Almeida; Jonathan Duplissy; Christina Williamson; Ismael K. Ortega; K. J. Pringle; Alexey Adamov; Urs Baltensperger; Peter Barmet; François Benduhn; Federico Bianchi; Martin Breitenlechner; Antony D. Clarke; Joachim Curtius; Josef Dommen; Neil M. Donahue; Sebastian Ehrhart; Alessandro Franchin; R. Guida; Jani Hakala; Armin Hansel; Martin Heinritzi; Tuija Jokinen; Juha Kangasluoma; J. Kirkby; Markku Kulmala; Agnieszka Kupc; Michael J. Lawler

Observations made in the CLOUD chamber at CERN illuminate atmospheric particle formation. How new particles form New particle formation in the atmosphere produces around half of the cloud condensation nuclei that seed cloud droplets. Such particles have a pivotal role in determining the properties of clouds and the global radiation balance. Dunne et al. used the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN to construct a model of aerosol formation based on laboratory-measured nucleation rates. They found that nearly all nucleation involves either ammonia or biogenic organic compounds. Furthermore, in the present-day atmosphere, cosmic ray intensity cannot meaningfully affect climate via nucleation. Science, this issue p. 1119 Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Occurrence of pristine aerosol environments on a polluted planet.

Douglas S. Hamilton; L. A. Lee; K. J. Pringle; C. L. Reddington; D. V. Spracklen; Kenneth S. Carslaw

Significance Uncertainty in aerosol forcing of climate since the preindustrial era hampers efforts to quantify the sensitivity of global temperature to radiative perturbations caused by human activity. Because forcings are referenced to preindustrial conditions, a large part of the uncertainty will be reduced only by accurately defining pristine aerosol conditions before air pollution. We show that pristine conditions should still be observable on a few days per month in many regions of the Earth. However, pristine cloudy regions, which are of most importance for forcing uncertainty, occur almost entirely in the Southern Hemisphere. Reduction in uncertainty of predominantly Northern Hemisphere forcing may therefore have to rely on measurements from a different hemisphere, which will limit the extent to which uncertainties can be reduced. Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol−cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present-day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions—the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty.


Geophysical Research Letters | 2015

Fires increase Amazon forest productivity through increases in diffuse radiation

A. Rap; D. V. Spracklen; Lina M. Mercado; C. L. Reddington; James M. Haywood; Rich Ellis; Oliver L. Phillips; Paulo Artaxo; Damien Bonal; N. Restrepo Coupe; Nathalie Butt

Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998–2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4–6.8% and net primary production (NPP) by 1.4–2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78–156 Tg C a−1 is equivalent to 33–65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30–60 Tg C a−1 of this NPP enhancement is within woody tissue, accounting for 8–16% of the observed carbon sink across mature Amazonian forests.


Geophysical Research Letters | 2014

Uncertainty in the magnitude of aerosol-cloud radiative forcing over recent decades

Leighton A. Regayre; K. J. Pringle; Ben B. B. Booth; L. A. Lee; G. W. Mann; J. Browse; M. T. Woodhouse; A. Rap; C. L. Reddington; Kenneth S. Carslaw

Aerosols and their effect on the radiative properties of clouds are one of the largest sources of uncertainty in calculations of the Earths energy budget. Here the sensitivity of aerosol-cloud albedo effect forcing to 31 aerosol parameters is quantified. Sensitivities are compared over three periods; 1850-2008, 1978-2008, and 1998-2008. Despite declining global anthropogenic SO2 emissions during 1978-2008, a cancelation of regional positive and negative forcings leads to a near-zero global mean cloud albedo effect forcing. In contrast to existing negative estimates, our results suggest that the aerosol-cloud albedo effect was likely positive (0.006 to 0.028 W m −2 ) in the recent decade, making it harder to explain the temperature hiatus as a forced response. Proportional contributions to forcing variance from aerosol processes and natural and anthropogenic emissions are found to be period dependent. To better constrain forcing estimates, the processes that dominate uncertainty on the timescale of interest must be better understood.


Faraday Discussions | 2013

The magnitude and sources of uncertainty in global aerosol

Kenneth S. Carslaw; L. A. Lee; C. L. Reddington; G. W. Mann; K. J. Pringle

Aerosol radiative forcing over the industrial period has remained the largest forcing uncertainty through all IPCC assessments since 1996. Despite the importance of this uncertainty for our understanding of past and future climate change, very little attention is given to the problem of uncertainty reduction in its own right, mainly because most uncertainty analysis approaches are not appropriate to computationally expensive global models. Here we show how a comprehensive understanding of global aerosol model parametric uncertainty can be obtained by using emulators. The approach enables a Monte Carlo sampling of the model uncertainty space based on a manageable number of simulations. This allows full probability density functions of model outputs to be generated from which the uncertainty and its causes can be diagnosed using variance decomposition. We apply this approach to global concentrations of particles larger than 3 and 50 nm diameter (N3 and N50) to produce a ranked list of twenty-eight processes and emissions that control the uncertainty. The results show that the uncertainty in N50 is much more strongly affected by emissions and processes that control the availability of gas phase H2SO4 than by uncertainties in the nucleation rate itself, which cause generally less than 10% uncertainty in N50 in July. Secondary organic aerosol production is assumed to be very uncertain (5-360 Tg a(-1) for biogenic emissions) but the effect on global N3 uncertainty is < 3% except in a few hotspots, and generally < 2% for N50. A complete understanding of the model uncertainty combined with global observations can be used to determine plausible and implausible parts of parameter space as well as to identify model structural weaknesses. In this direction, a preliminary comparison of the model ensemble with observations at Hyytiala, Finland, suggests that an organic-mediated boundary layer nucleation mechanism would help to optimise the behaviour of the model.


Proceedings of the National Academy of Sciences of the United States of America | 2016

On the relationship between aerosol model uncertainty and radiative forcing uncertainty

L. A. Lee; C. L. Reddington; Kenneth S. Carslaw

The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness.


Environmental Research Letters | 2016

The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

S T Turnock; Edward W. Butt; Thomas Richardson; G. W. Mann; C. L. Reddington; Piers M. Forster; James M. Haywood; M Crippa; G Janssens-Maenhout; C. E. Johnson; Nicolas Bellouin; Kenneth S. Carslaw; D. V. Spracklen

European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US


Bulletin of the American Meteorological Society | 2017

The global aerosol synthesis and science project (GASSP): Measurements and modeling to reduce uncertainty

C. L. Reddington; Kenneth S. Carslaw; P. Stier; N. A. J. Schutgens; Hugh Coe; Dantong Liu; J. D. Allan; J. Browse; K. J. Pringle; L. A. Lee; Masaru Yoshioka; Jill S. Johnson; Leighton A. Regayre; D. V. Spracklen; G. W. Mann; Antony D. Clarke; M. Hermann; S. Henning; Heike Wex; Thomas Kristensen; W. R. Leaitch; Ulrich Pöschl; D. Rose; Meinrat O. Andreae; Julia Schmale; Yutaka Kondo; N. Oshima; Joshua P. Schwarz; Athanasios Nenes; Bruce E. Anderson

232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human health over Europe, as well as having an unintended impact on the regional radiative balance and climate.

Collaboration


Dive into the C. L. Reddington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Rap

University of Leeds

View shared research outputs
Top Co-Authors

Avatar

Hugh Coe

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge