Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Liebl is active.

Publication


Featured researches published by C. Liebl.


Psychoneuroendocrinology | 2007

Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence

Mathias V. Schmidt; Vera Sterlemann; Karin Ganea; C. Liebl; S. Alam; Daniela Harbich; M. Greetfeld; Manfred Uhr; Florian Holsboer; Marianne B. Müller

Chronic stress is widely regarded as a key risk factor for a variety of diseases. A large number of paradigms have been used to induce chronic stress in rodents. However, many of these paradigms do not consider the etiology of human stress-associated disorders, where the stressors involved are mostly of social nature and the effects of the stress exposure persist even if the stressor is discontinued. In addition, many chronic stress paradigms are problematic with regard to stress adaptation, continuity, duration and applicability. Here we describe and validate a novel chronic social stress paradigm in male mice during adolescence. We demonstrate persistent effects of chronic social stress after 1 week of rest, including altered adrenal sensitivity, decreased expression of corticosteroid receptors in the hippocampus and increased anxiety. In addition, pharmacological treatments with the antidepressant paroxetine (SSRI) or with the corticotropin-releasing hormone receptor 1 antagonist DMP696 were able to prevent aversive long-term consequences of chronic social stress. In conclusion, this novel chronic stress paradigm results in persistent alterations of hypothalamus-pituitary-adrenal axis function and behavior, which are reversible by pharmacological treatment. Moreover, this paradigm allows to investigate the interaction of genetic susceptibility and environmental risk factors.


Hormones and Behavior | 2008

Long-term behavioral and neuroendocrine alterations following chronic social stress in mice : Implications for stress-related disorders

Vera Sterlemann; Karin Ganea; C. Liebl; Daniela Harbich; S. Alam; Florian Holsboer; Marianne B. Müller; Mathias V. Schmidt

The period of adolescence is characterized by a high vulnerability to stress and trauma, which might result in long-lasting consequences and an increased risk to develop psychiatric disorders. Using a recently developed mouse model for chronic social stress during adolescence, we studied persistent neuroendocrine and behavioral effects of chronic social stress obtained 12 months after cessation of the stressor. As a reference, we investigated immediate effects of chronic stress exposure obtained at the end of the chronic stress period. Immediately after the 7 week chronic stress period stressed animals show significantly increased adrenal weights, decreased thymus weight, increased basal corticosterone secretion and a flattened circadian rhythm. Furthermore, stressed animals display an increased anxiety-like behavior in the elevated plus maze and the novelty-induced suppression of feeding test. Hippocampal mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) mRNA levels were significantly decreased. To investigate persistent consequences of this early stressful experience, the same parameters were assessed in aged mice 12 months after the cessation of the stressor. Interestingly, we still found differences between formerly stressed and control mice in important stress-related parameters. MR expression levels were significantly lower in stressed animals, suggesting lasting, possibly epigenetic alterations in gene expression regulation. Furthermore, we observed long-term behavioral alterations in animals stressed during adolescence. Thus, we could demonstrate that chronic stress exposure during a crucial developmental time period results in long-term, persistent effects on physiological and behavioral parameters throughout life, which may contribute to an enhanced vulnerability to stress-induced diseases.


Hippocampus | 2009

Chronic social stress during adolescence induces cognitive impairment in aged mice.

Vera Sterlemann; Gerhard Rammes; Miriam Wolf; C. Liebl; Karin Ganea; Marianne B. Müller; Mathias V. Schmidt

Age‐related cognitive decline is one of the major aspects that impede successful aging in humans. Environmental factors, such as chronic stress, can accelerate or aggravate cognitive deficits during aging. While there is abundant evidence that chronic stress directly affects cognitive performance, the lasting consequences of stress exposures during vulnerable developmental time windows are largely unknown. This is especially true for the adolescent period, which is critical in terms of physical, sexual, and behavioral maturation. Here we used chronic social stress during adolescence in male mice and investigated the consequences of this treatment on cognitive performance during aging. We observed a substantial impairment of spatial memory, but not other memory domains, 12 months after the end of the stress period. This hippocampus‐dependent cognitive dysfunction was supported by concomitant impairment in LTP induction in CA1 neurons in 15‐month‐old animals. Further, we observed a decrease of hippocampal BDNF mRNA and synaptophysin immunoreactivity, suggesting plasticity and structural alterations in formerly stressed mice. Finally, we identified expression changes of specific neurotransmitter subunits critically involved in learning and memory, specifically the NMDA receptor subunit NR2B. Taken together, our results identify possible molecular mechanisms underlying cognitive impairment during aging, demonstrating the detrimental impact of stress during adolescence on hippocampus‐dependent cognitive function in aged mice.


Neurobiology of Disease | 2011

Forebrain CRHR1 deficiency attenuates chronic stress-induced cognitive deficits and dendritic remodeling

Xiao-Dong Wang; Yuncai Chen; Miriam Wolf; Klaus V. Wagner; C. Liebl; Sebastian H. Scharf; Daniela Harbich; Bianca Mayer; Wolfgang Wurst; Florian Holsboer; Jan M. Deussing; Tallie Z. Baram; Marianne B. Müller; Mathias V. Schmidt

Chronic stress evokes profound structural and molecular changes in the hippocampus, which may underlie spatial memory deficits. Corticotropin-releasing hormone (CRH) and CRH receptor 1 (CRHR1) mediate some of the rapid effects of stress on dendritic spine morphology and modulate learning and memory, thus providing a potential molecular basis for impaired synaptic plasticity and spatial memory by repeated stress exposure. Using adult male mice with CRHR1 conditionally inactivated in the forebrain regions, we investigated the role of CRH-CRHR1 signaling in the effects of chronic social defeat stress on spatial memory, the dendritic morphology of hippocampal CA3 pyramidal neurons, and the hippocampal expression of nectin-3, a synaptic cell adhesion molecule important in synaptic remodeling. In chronically stressed wild-type mice, spatial memory was disrupted, and the complexity of apical dendrites of CA3 neurons reduced. In contrast, stressed mice with forebrain CRHR1 deficiency exhibited normal dendritic morphology of CA3 neurons and mild impairments in spatial memory. Additionally, we showed that the expression of nectin-3 in the CA3 area was regulated by chronic stress in a CRHR1-dependent fashion and associated with spatial memory and dendritic complexity. Moreover, forebrain CRHR1 deficiency prevented the down-regulation of hippocampal glucocorticoid receptor expression by chronic stress but induced increased body weight gain during persistent stress exposure. These findings underscore the important role of forebrain CRH-CRHR1 signaling in modulating chronic stress-induced cognitive, structural and molecular adaptations, with implications for stress-related psychiatric disorders.


The Journal of Neuroscience | 2011

Forebrain CRF 1 modulates early-life stress-programmed cognitive deficits

Xiao-Dong Wang; Gerhard Rammes; Igor Kraev; Miriam Wolf; C. Liebl; Sebastian H. Scharf; Courtney J. Rice; Wolfgang Wurst; Florian Holsboer; Jan M. Deussing; Tallie Z. Baram; Michael G. Stewart; Marianne B. Müller; Mathias V. Schmidt

Childhood traumatic events hamper the development of the hippocampus and impair declarative memory in susceptible individuals. Persistent elevations of hippocampal corticotropin-releasing factor (CRF), acting through CRF receptor 1 (CRF1), in experimental models of early-life stress have suggested a role for this endogenous stress hormone in the resulting structural modifications and cognitive dysfunction. However, direct testing of this possibility has been difficult. In the current study, we subjected conditional forebrain CRF1 knock-out (CRF1-CKO) mice to an impoverished postnatal environment and examined the role of forebrain CRF1 in the long-lasting effects of early-life stress on learning and memory. Early-life stress impaired spatial learning and memory in wild-type mice, and postnatal forebrain CRF overexpression reproduced these deleterious effects. Cognitive deficits in stressed wild-type mice were associated with disrupted long-term potentiation (LTP) and a reduced number of dendritic spines in area CA3 but not in CA1. Forebrain CRF1 deficiency restored cognitive function, LTP and spine density in area CA3, and augmented CA1 LTP and spine density in stressed mice. In addition, early-life stress differentially regulated the amount of hippocampal excitatory and inhibitory synapses in wild-type and CRF1-CKO mice, accompanied by alterations in the neurexin-neuroligin complex. These data suggest that the functional, structural and molecular changes evoked by early-life stress are at least partly dependent on persistent forebrain CRF1 signaling, providing a molecular target for the prevention of cognitive deficits in adults with a history of early-life adversity.


PLOS ONE | 2011

Expression and Regulation of the Fkbp5 Gene in the Adult Mouse Brain

Sebastian H. Scharf; C. Liebl; Elisabeth B. Binder; Mathias V. Schmidt; Marianne B. Müller

Background Chronic stress has been found to be a major risk factor for various human pathologies. Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is tightly regulated via, among others, the glucocorticoid receptor (GR). The activity of the GR is modulated by a variety of proteins, including the co-chaperone FK506 binding protein 51 (FKBP5). Although FKBP5 has been associated with risk for affective disorders and has been implicated in GR sensitivity, previous studies focused mainly on peripheral blood, while information about basal distribution and induction in the central nervous system are sparse. Methodology/Principal Findings In the present study, we describe the basal expression pattern of Fkbp5 mRNA in the brain of adult male mice and show the induction of Fkbp5 mRNA via dexamethasone treatment or different stress paradigms. We could show that Fkbp5 is often, but not exclusively, expressed in regions also known for GR expression, for example the hippocampus. Furthermore, we were able to induce Fkbp5 expression via dexamethasone in the CA1 and DG subregions of the hippocampus, the paraventricular nucleus (PVN) and the central amygdala (CeA). Increase of Fkbp5 mRNA was also found after restrained stress and 24 hours of food deprivation in the PVN and the CeA, while in the hippocampus only food deprivation caused an increase in Fkbp5 mRNA. Conclusions/Significance Interestingly, regions with a low basal expression showed higher increase in Fkbp5 mRNA following induction than regions with high basal expression, supporting the hypothesis that GR sensitivity is, at least partly, mediated via Fkbp5. In addition, this also supports the use of Fkbp5 gene expression as a marker for GR sensitivity. In summary, we were able to give an overview of the basal expression of fkbp5 mRNA as well as to extend the findings of induction of Fkbp5 and its regulatory influence on GR sensitivity from peripheral blood to the brain.


Nature Neuroscience | 2013

Nectin-3 links CRHR1 signaling to stress-induced memory deficits and spine loss

Xiao-Dong Wang; Yun-Ai Su; Klaus V. Wagner; Charilaos Avrabos; Sebastian H. Scharf; Jakob Hartmann; Miriam Wolf; C. Liebl; Claudia Kühne; Wolfgang Wurst; Florian Holsboer; Matthias Eder; Jan M. Deussing; Marianne B. Müller; Mathias V. Schmidt

Stress impairs cognition via corticotropin-releasing hormone receptor 1 (CRHR1), but the molecular link between abnormal CRHR1 signaling and stress-induced cognitive impairments remains unclear. We investigated whether the cell adhesion molecule nectin-3 is required for the effects of CRHR1 on cognition and structural remodeling after early-life stress exposure. Postnatally stressed adult mice had decreased hippocampal nectin-3 levels, which could be attenuated by CRHR1 inactivation and mimicked by corticotropin-releasing hormone (CRH) overexpression in forebrain neurons. Acute stress dynamically reduced hippocampal nectin-3 levels, which involved CRH-CRHR1, but not glucocorticoid receptor, signaling. Suppression of hippocampal nectin-3 caused spatial memory deficits and dendritic spine loss, whereas enhancing hippocampal nectin-3 expression rescued the detrimental effects of early-life stress on memory and spine density in adulthood. Our findings suggest that hippocampal nectin-3 is necessary for the effects of stress on memory and structural plasticity and indicate that the CRH-CRHR1 system interacts with the nectin-afadin complex to mediate such effects.


Hormones and Behavior | 2010

A novel chronic social stress paradigm in female mice.

Mathias V. Schmidt; Sebastian H. Scharf; C. Liebl; Daniela Harbich; B. Mayer; Florian Holsboer; Marianne B. Müller

Major depression is one of the most prevalent stress-related psychiatric diseases. Next to environmental influences such as chronic social stress, gender is among the strongest risk factors for major depression, with women having a twice as high risk to develop the disease compared to men. While there is abundant literature on the effects of chronic social stress in male rodents, there is a serious lack of information on gender-specific effects. Especially in mice, which due to the wide availability of transgenic lines offer a unique opportunity to study gene x environment interactions, there is no existing model of chronic social stress that is applicable to both sexes. We here describe the effects of chronic social stress based on the disruption of the social network in a group-housed situation in female mice, a model that was recently described and validated for male mice. In this model, the group composition of the mice is changed twice per week for a period of 7 weeks, covering the adolescent and early adulthood period. We observed that housing in an unpredictable social environment resulted in chronic stress in female mice. The observed effects, which included increased adrenal weight, decreased thymus weight, increased corticosterone levels, and increased anxiety-like behavior, were very similar to the described effects of this paradigm in male mice. In addition, we observed a distinct expression of stress system-related genes in female mice following chronic stress exposure. Our results validate this model as a suitable approach to study chronic social stress in female mice and open up the opportunity to use this model with transgenic or knockout mouse lines.


Frontiers in Molecular Neuroscience | 2009

Gene expression profiling following maternal deprivation: Involvement of the brain renin-angiotensin system

C. Liebl; Markus Panhuysen; Benno Pütz; Dietrich Trümbach; Wolfgang Wurst; Jan M. Deussing; Marianne B. Müller; Mathias V. Schmidt

The postnatal development of the mouse is characterized by a stress hypo-responsive period (SHRP), where basal corticosterone levels are low and responsiveness to mild stressors is reduced. Maternal separation is able to disrupt the SHRP and is widely used to model early trauma. In this study we aimed at identifying of brain systems involved in acute and possible long-term effects of maternal separation. We conducted a microarray-based gene expression analysis in the hypothalamic paraventricular nucleus after maternal separation, which revealed 52 differentially regulated genes compared to undisturbed controls, among them are 37 up-regulated and 15 down-regulated genes. One of the prominently up-regulated genes, angiotensinogen, was validated using in-situ hybridization. Angiotensinogen is the precursor of angiotensin II, the main effector of the brain renin-angiotensin system (RAS), which is known to be involved in stress system modulation in adult animals. Using the selective angiotensin type I receptor [AT(1)] antagonist candesartan we found strong effects on CRH and GR mRNA expression in the brain and ACTH release following maternal separation. AT(1) receptor blockade appears to enhance central effects of maternal separation in the neonate, suggesting a suppressing function of brain RAS during the SHRP. Taken together, our results illustrate the molecular adaptations that occur in the paraventricular nucleus following maternal separation and contribute to identifying signaling cascades that control stress system activity in the neonate.


Endocrinology | 2009

Postnatal Glucocorticoid Excess Due to Pituitary Glucocorticoid Receptor Deficiency: Differential Short- and Long-Term Consequences

Mathias V. Schmidt; Vera Sterlemann; Klaus V. Wagner; Bertram Niederleitner; Karin Ganea; C. Liebl; Jan M. Deussing; Stefan Berger; Günther Schütz; Florian Holsboer; Marianne B. Müller

A tight regulation of hypothalamic-pituitary-adrenal (HPA) axis activity is essential for successful adaptation to stressful stimuli. Disruption of normal HPA axis development is a main risk factor for diseases such as posttraumatic stress disorder or depression, but the molecular mechanisms that lead to these long-term consequences are poorly understood. Here, we test the hypothesis that the pituitary glucocorticoid receptor (GR) is involved in regulating HPA axis function in neonatal and adult animals. Furthermore, we investigate whether postnatal hypercortisolism induced by pituitary GR deficiency is a main factor contributing to the persistent effects of early-life stress. Conditional knockout mice with a deletion of the GR at the pituitary (GR(POMCCre)) show excessive basal corticosterone levels during postnatal development, but not in adulthood. The hypercortisolemic state of neonatal GR(POMCCre) mice is accompanied by central gene expression changes of CRH and vasopressin in the paraventricular nucleus, but these alterations normalize at later ages. In adult mice, pituitary GR deficiency results in impaired glucocorticoid negative feedback. Furthermore, adult GR(POMCCre) mice display a more active coping strategy in the forced swim test, with no alterations in anxiety like behavior or cognitive functions. Postnatal GR antagonist treatment is able to prevent the long-term behavioral effects in GR(POMCCre) mice. In conclusion, we show that pituitary GRs are centrally involved in regulating HPA axis activity in neonates and mediate negative feedback regulation in adult animals. Postnatal glucocorticoid excess results in an altered stress-coping behavior in adult animals, with no effects on anxiety like behavior or cognition.

Collaboration


Dive into the C. Liebl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge