Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan M. Deussing is active.

Publication


Featured researches published by Jan M. Deussing.


Journal of Clinical Investigation | 2000

Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c

M. Eugenia Guicciardi; Jan M. Deussing; Hideyuki Miyoshi; Steven F. Bronk; Phyllis A. Svingen; Christoph Peters; Scott H. Kaufmann; Gregory J. Gores

TNF-alpha-induced apoptosis is thought to involve mediators from acidic vesicles. Cathepsin B (cat B), a lysosomal cysteine protease, has recently been implicated in apoptosis. To determine whether cat B contributes to TNF-alpha-induced apoptosis, we exposed mouse hepatocytes to the cytokine in vitro and in vivo. Isolated hepatocytes treated with TNF-alpha in the presence of the transcription inhibitor actinomycin D (AcD) accumulated cat B in their cytosol. Further experiments using cell-free systems indicated that caspase-8 caused release of active cat B from purified lysosomes and that cat B, in turn, increased cytosol-induced release of cytochrome c from mitochondria. Consistent with these observations, the ability of TNF-alpha/AcD to induce mitochondrial release of cytochrome c, caspase activation, and apoptosis of isolated hepatocytes was markedly diminished in cells from CatB(-/-) mice. Deletion of the CatB gene resulted in diminished liver injury and enhanced survival after treatment in vivo with TNF-alpha and an adenovirus construct expressing the IkappaB superrepressor. Collectively, these observations suggest that caspase-mediated release of cat B from lysosomes enhances mitochondrial release of cytochrome c and subsequent caspase activation in TNF-alpha-treated hepatocytes.


Journal of Clinical Investigation | 2000

Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis

Walter Halangk; Markus M. Lerch; Barbara Brandt-Nedelev; Wera Roth; Thomas Reinheckel; Wolfram Domschke; H. Lippert; Christoph Peters; Jan M. Deussing

Autodigestion of the pancreas by its own prematurely activated digestive proteases is thought to be an important event in the onset of acute pancreatitis. The mechanism responsible for the intrapancreatic activation of digestive zymogens is unknown, but a recent hypothesis predicts that a redistribution of lysosomal cathepsin B (CTSB) into a zymogen-containing subcellular compartment triggers this event. To test this hypothesis, we used CTSB-deficient mice in which the ctsb gene had been deleted by targeted disruption. After induction of experimental secretagogue-induced pancreatitis, the trypsin activity in the pancreas of ctsb(-/-) animals was more than 80% lower than in ctsb(+/+) animals. Pancreatic damage as indicated by serum activities of amylase and lipase, or by the extent of acinar tissue necrosis, was 50% lower in ctsb(-/-) animals. These experiments provide the first conclusive evidence to our knowledge that cathepsin B plays a role in intrapancreatic trypsinogen activation and the onset of acute pancreatitis.


Nature Neuroscience | 2003

Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress

Marianne B. Müller; Stephan Zimmermann; Inge Sillaber; Thomas P. Hagemeyer; Jan M. Deussing; Peter Timpl; Michael S. D. Kormann; Susanne K. Droste; Ralf Kühn; Johannes M. H. M. Reul; Florian Holsboer; Wolfgang Wurst

Corticotropin-releasing hormone (CRH) is centrally involved in coordinating responses to a variety of stress-associated stimuli. Recent clinical data implicate CRH in the pathophysiology of human affective disorders. To differentiate the CNS pathways involving CRH and CRH receptor 1 (Crhr1) that modulate behavior from those that regulate neuroendocrine function, we generated a conditional knockout mouse line (Crhr1loxP/loxPCamk2a-cre) in which Crhr1 function is inactivated postnatally in anterior forebrain and limbic brain structures, but not in the pituitary. This leaves the hypothalamic-pituitary-adrenocortical (HPA) system intact. Crhr1loxP/loxPCamk2a-cre mutants showed reduced anxiety, and the basal activity of their HPA system was normal. In contrast to Crhr1 null mutants, conditional mutants were hypersensitive to stress corticotropin and corticosterone levels remained significantly elevated after stress. Our data clearly show that limbic Crhr1 modulates anxiety-related behavior and that this effect is independent of HPA system function. Furthermore, we provide evidence for a new role of limbic Crhr1 in neuroendocrine adaptation to stress.


The FASEB Journal | 2000

Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling

Wera Roth; Jan M. Deussing; Vladimir A. Botchkarev; Meike Pauly-Evers; Paul Saftig; A. Hafner; Peter J. Schmidt; Wolfgang W. Schmahl; Johanna Scherer; Ingrun Anton-Lamprecht; Kurt von Figura; Ralf Paus; Christoph Peters

Lysosomal cysteine proteinases of the papain family are involved in lysosomal bulk proteolysis, major histocompatibility complex class II mediated antigen presentation, prohormone processing, and extracellular matrix remodeling. Cathepsin L (CTSL) is a ubiquitously expressed major representative of the papain‐like family of cysteine proteinases. To investigate CTSL in vivo functions, the gene was inactivated by gene targeting in embryonic stem cells. CTSL‐deficient mice develop periodic hair loss and epidermal hyperplasia, acanthosis, and hyperkeratosis. The hair loss is due to alterations of hair follicle morphogenesis and cycling, dilatation of hair follicle canals, and disturbed club hair formation. Hyperproliferation of hair follicle epithelial cells and basal epidermal keratinocytes–both of ectodermal origin–are the primary characteristics underlying the mutant phenotype. Pathological inflammatory responses have been excluded as a putative cause of the skin and hair disorder. The phenotype of CTSL‐deficient mice is reminiscent of the spontaneous mouse mutant furless(fs). Analyses of the ctsl gene of fs mice revealed a G149R mutation inactivating the proteinase activity. CTSL is the first lysosomal proteinase shown to be essential for epidermal homeostasis and regular hair follicle morphogenesis and cycling.—Roth, W., Deussing, J., Botchkarev, V. A., Pauly‐Evers, M., Saftig, P., Hafner, A., Schmidt, P., Schmahl, W., Scherer, J., Anton‐Lamprecht, I., von Figura, K., Paus, R., Peters, C. Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J. 14, 2075–2086 (2000)


Cancer Research | 2006

Tumor Cell–Derived and Macrophage-Derived Cathepsin B Promotes Progression and Lung Metastasis of Mammary Cancer

Olga Vasiljeva; Anna Papazoglou; Achim Krüger; Harald Brodoefel; Matvey Korovin; Jan M. Deussing; Nicole H. Augustin; Boye Schnack Nielsen; Kasper Almholt; Matthew Bogyo; Christoph Peters; Thomas Reinheckel

Proteolysis in close vicinity of tumor cells is a hallmark of cancer invasion and metastasis. We show here that mouse mammary tumor virus-polyoma middle T antigen (PyMT) transgenic mice deficient for the cysteine protease cathepsin B (CTSB) exhibited a significantly delayed onset and reduced growth rate of mammary cancers compared with wild-type PyMT mice. Lung metastasis volumes were significantly reduced in PyMT;ctsb(+/-), an effect that was not further enhanced in PyMT;ctsb(-/-) mice. Furthermore, lung colonization studies of PyMT cells with different CTSB genotypes injected into congenic wild-type mice and in vitro Matrigel invasion assays confirmed a specific role for tumor-derived CTSB in invasion and metastasis. Interestingly, cell surface labeling of cysteine cathepsins by the active site probe DCG-04 detected up-regulation of cathepsin X on PyMT;ctsb(-/-) cells. Treatment of cells with a neutralizing anti-cathepsin X antibody significantly reduced Matrigel invasion of PyMT;ctsb(-/-) cells but did not affect invasion of PyMT;ctsb(+/+) or PyMT;ctsb(+/-) cells, indicating a compensatory function of cathepsin X in CTSB-deficient tumor cells. Finally, an adoptive transfer model, in which ctsb(+/+), ctsb(+/-), and ctsb(-/-) recipient mice were challenged with PyMT;ctsb(+/+) cells, was used to address the role of stroma-derived CTSB in lung metastasis formation. Notably, ctsb(-/-) mice showed reduced number and volume of lung colonies, and infiltrating macrophages showed a strongly up-regulated expression of CTSB within metastatic cell populations. These results indicate that both cancer cell-derived and stroma cell-derived (i.e., macrophages) CTSB plays an important role in tumor progression and metastasis.


The Journal of Neuroscience | 2005

Identification of Glyoxalase-I as a Protein Marker in a Mouse Model of Extremes in Trait Anxiety

Simone A. Krömer; Melanie S. Keßler; Dale Milfay; Isabel Birg; Mirjam Bunck; Ludwig Czibere; Markus Panhuysen; Benno Pütz; Jan M. Deussing; Florian Holsboer; Rainer Landgraf; Christoph W. Turck

For >15 generations, CD1 mice have been selectively and bidirectionally bred for either high-anxiety-related behavior (HAB-M) or low-anxiety-related behavior (LAB-M) on the elevated plus-maze. Independent of gender, HAB-M were more anxious than LAB-M animals in a variety of additional tests, including those reflecting risk assessment behaviors and ultrasound vocalization, with unselected CD1 “normal” control (NAB-M) and cross-mated (CM-M) mice displaying intermediate behavioral scores in most cases. Furthermore, in both the forced-swim and tail-suspension tests, LAB-M animals showed lower scores of immobility than did HAB-M and NAB-M animals, indicative of a reduced depression-like behavior. Using proteomic and microarray analyses, glyoxalase-I was identified as a protein marker, which is consistently expressed to a higher extent in LAB-M than in HAB-M mice in several brain areas. The same phenotype-dependent difference was found in red blood cells with NAB-M and CM-M animals showing intermediate expression profiles of glyoxalase-I. Additional studies will examine whether glyoxalase-I has an impact beyond that of a biomarker to predict the genetic predisposition to anxiety- and depression-like behavior.


Immunological Reviews | 1999

Proteases involved in MHC dass II antigen presentation

Jose A. Villadangos; Rebecca A.R. Bryant; Jan M. Deussing; Christoph Driessen; Ana-Maria Lennon-Duménil; Richard J. Riese; Wera Roth; Paul Saftig; Guo-Ping Shi; Harold A. Chapman; Christoph Peters; Hidde L. Ploegh

Summary: Major histocompatibility complex class II antigen presentation requires the participation of lysosomal proteases in two convergent processes. First, the antigens endocytosed by the antigen‐presenting cells must be broken down into antigenic peptides. Second, class II tnolecules are synthesized with their peptide‐binding site blocked by invariant chain (li), and they acquire the capacity to bind antigens only after Ii has been degraded in the compartments where peptides reside. The study of genetically modified tnice deficietit in single lysosomal proteases has allowed us to determine their role in these processes, Cathepsins (Cat) B and D. previously considered major players in MHC class II antigen presentation, are dispensable for degradation of Ii and for generation of several antigenic determinants. By contrast, Cat S plays an essential role in removal of Ii in B cells and dendritic cells, whereas Cat L apparently does so in thymic epithelial cells. Accordingly, the absence of Cat S and L have major consequences for the onset of humoral immtine responses and for T‐cell selection, respectively. It is likely that other as yet uncharacterized lysosomal enzymes also play a role in Ii degradation and in generation of antigenic determinants. Experiments involving drugs that interfere with protein traffic suggest that more than one mechanism for Ii removal, probably involving different proteases, can co‐exist in the same antigen‐presenting cell. These findings may allow the development of protease inhibitors with possible therapeutic applications.


Science | 2011

Glutamatergic and Dopaminergic Neurons Mediate Anxiogenic and Anxiolytic Effects of CRHR1

Damian Refojo; Martin Schweizer; Claudia Kuehne; Stefanie Ehrenberg; Christoph K. Thoeringer; Annette M. Vogl; Nina Dedic; Marion Schumacher; Gregor von Wolff; Charilaos Avrabos; Chadi Touma; David Engblom; Günther Schütz; Klaus-Armin Nave; Matthias Eder; Carsten T. Wotjak; Inge Sillaber; Florian Holsboer; Wolfgang Wurst; Jan M. Deussing

An imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disturbances. The corticotropin-releasing hormone receptor 1 (CRHR1) critically controls behavioral adaptation to stress and is causally linked to emotional disorders. Using neurochemical and genetic tools, we determined that CRHR1 is expressed in forebrain glutamatergic and γ-aminobutyric acid–containing (GABAergic) neurons as well as in midbrain dopaminergic neurons. Via specific CRHR1 deletions in glutamatergic, GABAergic, dopaminergic, and serotonergic cells, we found that the lack of CRHR1 in forebrain glutamatergic circuits reduces anxiety and impairs neurotransmission in the amygdala and hippocampus. Selective deletion of CRHR1 in midbrain dopaminergic neurons increases anxiety-like behavior and reduces dopamine release in the prefrontal cortex. These results define a bidirectional model for the role of CRHR1 in anxiety and suggest that an imbalance between CRHR1-controlled anxiogenic glutamatergic and anxiolytic dopaminergic systems might lead to emotional disorders.


Biological Chemistry | 2001

Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L.

Thomas Reinheckel; Jan M. Deussing; Wera Roth; Christoph Peters

Abstract The lysosomal cysteine peptidases cathepsin B and cathepsin L are abundant and ubiquitously expressed members of the papain family, and both enzymes contribute to the terminal degradation of proteins in the lysosome. However, there is accumulating evidence for specific functions of lysosomal proteases in health and disease. The generation of knock out mouse strains that are deficient in lysosomal proteases provides a valuable tool for evaluation of existing hypotheses and gaining new insights into the in vivo functions of these proteases. In this minireview, we summarise and discuss the findings obtained by analysis of mice that are devoid of cathepsin B or cathepsin L. In brief, cathepsin L appears to be critically involved in epidermal homeostasis, regulation of the hair cycle, and MHC class IImediated antigen presentation in cortical epithelial cells of the thymus. Cathepsin B plays a major role in pathological trypsinogen activation in the early course of experimental pancreatitis and contributes significantly to TNFα induced hepatocyte apoptosis.


Journal of Clinical Investigation | 2003

Thyroid functions of mouse cathepsins B, K, and L

Bianca Friedrichs; Carmen Tepel; Thomas Reinheckel; Jan M. Deussing; Kurt von Figura; Volker Herzog; Christoph Peters; Paul Saftig; Klaudia Brix

Thyroid function depends on processing of the prohormone thyroglobulin by sequential proteolytic events. From in vitro analysis it is known that cysteine proteinases mediate proteolytic processing of thyroglobulin. Here, we have analyzed mice with deficiencies in cathepsins B, K, L, B and K, or K and L in order to investigate which of the cysteine proteinases is most important for proteolytic processing of thyroglobulin in vivo. Immunolabeling demonstrated a rearrangement of the endocytic system and a redistribution of extracellularly located enzymes in thyroids of cathepsin-deficient mice. Cathepsin L was upregulated in thyroids of cathepsin K(-/-) or B(-/-)/K(-/-) mice, suggesting a compensation of cathepsin L for cathepsin K deficiency. Impaired proteolysis resulted in the persistence of thyroglobulin in the thyroids of mice with deficiencies in cathepsin B or L. The typical multilayered appearance of extracellularly stored thyroglobulin was retained in cathepsin K(-/-) mice only. These results suggest that cathepsins B and L are involved in the solubilization of thyroglobulin from its covalently cross-linked storage form. Cathepsin K(-/-)/L(-/-) mice had significantly reduced levels of free thyroxine, indicating that utilization of luminal thyroglobulin for thyroxine liberation is mediated by a combinatory action of cathepsins K and L.

Collaboration


Dive into the Jan M. Deussing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge