Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Lynne McIntyre is active.

Publication


Featured researches published by C. Lynne McIntyre.


Plant Physiology | 2007

Molecular Dissection of Variation in Carbohydrate Metabolism Related to Water-Soluble Carbohydrate Accumulation in Stems of Wheat

Gang-Ping Xue; C. Lynne McIntyre; Colin L. D. Jenkins; Donna Glassop; Anthony F. van Herwaarden; Ray Shorter

Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.


Plant Molecular Biology | 2003

Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis

Rosanne E. Casu; Christopher P. L. Grof; Anne L. Rae; C. Lynne McIntyre; Christine M. Dimmock; John M. Manners

The ability of sugarcane to accumulate sucrose provides an experimental system for the study of gene expression determining carbohydrate partitioning and metabolism. A sequence survey of 7242 ESTs derived from the sucrose-accumulating, maturing stem revealed that transcripts for carbohydrate metabolism gene sequences (CMGs) are relatively rare in this tissue. However, within the CMG group, putative sugar transporter ESTs form one of the most abundant classes observed. A combination of EST analysis and microarray and northern hybridization revealed that one of the putative sugar transporter types, designated PST type 2a, was the most abundant and most strongly differentially expressed CMG in maturing stem tissue. PST type 2a is homologous to members of the major facilitator super-family of transporters, possessing 12 predicted transmembrane domains and a sugar transport conserved domain, interrupted by a large cytoplasmic loop. Its transcript was localized to phloem companion cells and associated parenchyma in maturing stem, suggesting a role in sugar translocation rather than storage. In addition, other categories of CMGs show evidence of coordinated expression, such as enzymes involved in sucrose synthesis and cleavage, and a majority of enzymes involved in glycolysis and the pentose phosphate pathway. This study demonstrates the utility of genomic approaches using large-scale EST acquisition and microarray hybridization techniques for studies of the developmental regulation of metabolic enzymes and potential transporters in sugarcane.


Molecular Plant | 2011

Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat.

Gang-Ping Xue; Heather Way; Terese Richardson; Janneke Drenth; Priya A. Joyce; C. Lynne McIntyre

NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.


Plant Molecular Biology | 2004

Identification of differentially expressed transcripts from maturing stem of sugarcane by in silico analysis of stem expressed sequence tags and gene expression profiling

Rosanne E. Casu; Christine M. Dimmock; Scott C. Chapman; Christopher P. L. Grof; C. Lynne McIntyre; Graham D. Bonnett; John M. Manners

Sugarcane accumulates high concentrations of sucrose in the mature stem and a number of physiological processes on-going in maturing stem tissue both directly and indirectly allow this process. To identify transcripts that are associated with stem maturation, we compared patterns of gene expression in maturing and immature stem tissue by expression profiling and bioinformatic analysis of sets of stem ESTs. This study complements a previous study of gene expression associated directly with sugar metabolism in sugarcane. A survey of sequences derived from stem tissue identified an abundance of several classes of sequence that are associated with fibre biosynthesis in the maturing stem. A combination of EST analyses and microarray hybridization revealed that genes encoding homologues of the dirigent protein, a protein that assists in the stereospecificity of lignin assembly, were the most abundant and most strongly differentially expressed transcripts in maturing stem tissue. There was also evidence of coordinated expression of other categories of fibre biosynthesis and putative defence- and stress-related transcripts in the maturing stem. This study has demonstrated the utility of genomic approaches using large-scale EST acquisition and microarray hybridization techniques to highlight the very significant transcriptional investment the maturing stem of sugarcane has placed in fibre biosynthesis and stress tolerance, in addition to its already well-documented role in sugar accumulation.


Plant Molecular Biology | 2008

Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress

Gang-Ping Xue; C. Lynne McIntyre; Donna Glassop; Ray Shorter

Water deficit in plants causes a reduction in photosynthesis and high demands for osmolyte synthesis. To elucidate regulation of carbohydrate metabolic genes in wheat (Triticum aestivum) leaves during drought stress, we performed a systematic expression study using quantitative RT-PCR and cDNA microarray. These analyses revealed that expression levels of most genes encoding chloroplast enzymes involved in carbon fixation (Calvin cycle) were reduced in the leaves during prolonged drought stress. Transcript levels of highly expressed isoenzymes of hexokinase and fructokinase also decreased. Conversely, genes encoding cytoplasmic and vacuolar enzymes in the pathways leading to glucose, fructose and fructan production were up-regulated in the stressed leaves. Systematic expression analysis of an almost complete set of genes involved in conversion of triose phosphates to hexoses and hexose phosphorylation showed that isoenzymes of many enzymes were differentially regulated during drought stress. Correlation analysis indicated that the drought down-regulated Calvin cycle genes were coordinately regulated. This coordinated down-regulation extended to genes encoding major isoenzymes of chloroplast triose-phosphate/phosphate translocator, cytoplasmic fructose-1,6-bisphosphate aldolase and fructose bisphosphatase. Highly correlated expression was also observed between drought up-regulated genes involved in sucrose synthesis and hydrolysis or fructan synthesis. These data dissect coordination in regulation of key enzyme genes involved in carbon fixation and accumulation of hexoses and fructans and provide an insight into molecular mechanisms at the transcript level underlying changes in carbohydrate metabolism in wheat adaptation to drought stress.


Functional & Integrative Genomics | 2009

Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation

Lindsay M. Shaw; C. Lynne McIntyre; Peter M. Gresshoff; Gang-Ping Xue

DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.


Theoretical and Applied Genetics | 2006

Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure.

Xianming Wei; Phillip Jackson; C. Lynne McIntyre; Karen S. Aitken; Barry Croft

Association between markers and sugarcane diseases were investigated in a collection of 154 sugarcane clones, consisting of important ancestors or parents, and cultivars. 1,068 polymorphic AFLP and 141 SRR markers were scored across all clones. Data on the four most important diseases in the Australian sugarcane industry were obtained; these diseases being pachymetra root rot (Pachymetra chaunorhiza B.J. Croft & M.W. Dick), leaf scald (Xanthomonas albilineans Dowson), Fiji leaf gall (Fiji disease virus), and smut (Ustilago scitaminea H. & P. Sydow). By a simple regression analysis, association between markers and diseases could be readily detected. However, many of these associations were due to the effects of embedded population structure and random effects. After taking population structure into account, we found that 59% of the phenotypic variation in smut resistance ratings could be accounted for by 11 markers, 32% of variation for leaf scald and pachymetra root rot rating by 4 markers, and 26% of Fiji leaf gall by 5 markers. The results suggest that marker–trait associations can be readily detected in populations generated from modern sugarcane breeding programs. This may be due to special features of past sugarcane breeding programs leading to persistent linkage disequilibrium in modern parental populations.


Euphytica | 2007

An assessment of the genetic relationship between sweet and grain sorghums, within Sorghum bicolor ssp bicolor (L.) Moench, using AFLP markers

Kimberley B. Ritter; C. Lynne McIntyre; I. D. Godwin; David Jordan; Scott C. Chapman

Compared to grain sorghums, sweet sorghums typically have lower grain yield and thick, tall stalks which accumulate high levels of sugar (sucrose, fructose and glucose). Unlike commercial grain sorghum (S. bicolor ssp. bicolor) cultivars, which are usually F1 hybrids, commercial sweet sorghums were selected as wild accessions or have undergone limited plant breeding. Although all sweet sorghums are classified within S. bicolor ssp. bicolor, their genetic relationship with grain sorghums is yet to be investigated. Ninety-five genotypes, including 31 sweet sorghums and 64 grain sorghums, representing all five races within the subspecies bicolor, were screened with 277 polymorphic amplified fragment length polymorphism (AFLP) markers. Cluster analysis separated older sweet sorghum accessions (collected in mid 1800s) from those developed and released during the early to mid 1900s. These groups were emphasised in a principle component analysis of the results such that sweet sorghum lines were largely distinguished from the others, particularly by a group of markers located on sorghum chromosomes SBI-08 and SBI-10. Other studies have shown that QTL and ESTs for sugar-related traits, as well as for height and anthesis, map to SBI-10. Although the clusters obtained did not group clearly on the basis of racial classification, the sweet sorghum lines often cluster with grain sorghums of similar racial origin thus suggesting that sweet sorghum is of polyphyletic origin within S. bicolor ssp. bicolor


Functional Plant Biology | 2006

TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences

Gang-Ping Xue; Neil I. Bower; C. Lynne McIntyre; George A. Riding; Kemal Kazan; Ray Shorter

NAC proteins are one of the largest families of plant transcription factors and have recently been implicated in diverse physiological processes. To elucidate their role in gene regulation, we determined the DNA-binding specificity of a drought- and cold-inducible NAC protein, TaNAC69 from wheat, and analysed its homologues from other species. Two consensus DNA-binding sequences (spanning 23-24 bp) of TaNAC69 were identified through binding site selection and both consisted of two half sites. Comprehensive data on the DNA-binding specificity of TaNAC69 were generated through extensive base substitution mutagenesis. TaNAC69 and its homologue in Arabidopsis, NAP, sharing 75% sequence identity in the NAC domain, exhibited similar DNA-binding specificity. TaNAC69 was able to homodimerise through its NAC domain. The NAC domain consists of five conserved subdomains. Subdomain mutation showed that a loss or reduction in TaNAC69 dimerisation capacity was accompanied with abolition or decrease in its DNA-binding activity. These data suggest that all subdomains are necessary to maintain a functional NAC domain structure required for interaction with DNA and dimerisation.


Journal of Experimental Botany | 2014

The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes

Gang-Ping Xue; Shahab Sadat; Janneke Drenth; C. Lynne McIntyre

Heat shock factors (Hsfs) play a central regulatory role in acquired thermotolerance. To understand the role of the major molecular players in wheat adaptation to heat stress, the Hsf family was investigated in Triticum aestivum. Bioinformatic and phylogenetic analyses identified 56 TaHsf members, which are classified into A, B, and C classes. Many TaHsfs were constitutively expressed. Subclass A6 members were predominantly expressed in the endosperm under non-stress conditions. Upon heat stress, the transcript levels of A2 and A6 members became the dominant Hsfs, suggesting an important regulatory role during heat stress. Many TaHsfA members as well as B1, C1, and C2 members were also up-regulated during drought and salt stresses. The heat-induced expression profiles of many heat shock protein (Hsp) genes were paralleled by those of A2 and A6 members. Transactivation analysis revealed that in addition to TaHsfA members (A2b and A4e), overexpression of TaHsfC2a activated expression of TaHsp promoter-driven reporter genes under non-stress conditions, while TaHsfB1b and TaHsfC1b did not. Functional heat shock elements (HSEs) interacting with TaHsfA2b were identified in four TaHsp promoters. Promoter mutagenesis analysis demonstrated that an atypical HSE (GAACATTTTGGAA) in the TaHsp17 promoter is functional for heat-inducible expression and transactivation by Hsf proteins. The transactivation of Hsp promoter-driven reporter genes by TaHsfC2a also relied on the presence of HSE. An activation motif in the C-terminal domain of TaHsfC2a was identified by amino residue substitution analysis. These data demonstrate the role of HsfA and HsfC2 in regulation of Hsp genes in wheat.

Collaboration


Dive into the C. Lynne McIntyre's collaboration.

Top Co-Authors

Avatar

Gang-Ping Xue

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

John M. Manners

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Janneke Drenth

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ray Shorter

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Rosanne E. Casu

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Scott C. Chapman

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Robert J Henry

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Anne L. Rae

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge