Janneke Drenth
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janneke Drenth.
Molecular Plant | 2011
Gang-Ping Xue; Heather Way; Terese Richardson; Janneke Drenth; Priya A. Joyce; C. Lynne McIntyre
NAC proteins are plant-specific transcription factors and enriched with members involved in plant response to drought stress. In this study, we analyzed the expression profiles of TaNAC69 in bread wheat using Affymetrix Wheat Genome Array datasets and quantitative RT-PCR. TaNAC69 expression was positively associated with wheat responses to both abiotic and biotic stresses and was closely correlated with a number of stress up-regulated genes. The functional analyses of TaNAC69 in transgenic wheat showed that TaNAC69 driven by a barley drought-inducible HvDhn4s promoter led to marked drought-inducible overexpression of TaNAC69 in the leaves and roots of transgenic lines. The HvDhn4s:TaNAC69 transgenic lines produced more shoot biomass under combined mild salt stress and water-limitation conditions, had longer root and more root biomass under polyethylene glycol-induced dehydration. Analysis of transgenic lines with constitutive overexpression of TaNAC69 showed the enhanced expression levels of several stress up-regulated genes. DNA-binding assays revealed that TaNAC69 and its rice homolog (ONAC131) were capable of binding to the promoter elements of three rice genes (chitinase, ZIM, and glyoxalase I) and an Arabidopsis glyoxalase I family gene, which are homologs of TaNAC69 up-regulated stress genes. These data suggest that TaNAC69 is involved in regulating stress up-regulated genes and wheat adaptation to drought stress.
Theoretical and Applied Genetics | 2003
Y. Z. Tao; A. Hardy; Janneke Drenth; R. G. Henzell; B. A. Franzmann; David Jordan; D. G. Butler; C. L. McIntyre
Sorghum midge is the one of the most damaging insect pests of grain sorghum production worldwide. At least three different mechanisms are involved in midge resistance. The genetic bases of these mechanisms, however, are poorly understood. In this study, for the first time, quantitative trait loci associated with two of the mechanisms of midge resistance, antixenosis and antibiosis, were identified in an RI (recombinant inbred) population from the cross of sorghum lines ICSV745 × 90562. Two genetic regions located on separate linkage groups were found to be associated with antixenosis and explained 12% and 15%, respectively, of the total variation in egg numbers/spikelet laid in a cage experiment. One region was significantly associated with antibiosis and explained 34.5% of the variation of the difference of egg and pupal counts in the RI population. The identification of genes for different mechanisms of midge resistance will be particularly useful for exploring new sources of midge resistance and for gene pyramiding of different mechanisms for increased security in sorghum breeding through marker-assisted selection.
Journal of Experimental Botany | 2014
Gang-Ping Xue; Shahab Sadat; Janneke Drenth; C. Lynne McIntyre
Heat shock factors (Hsfs) play a central regulatory role in acquired thermotolerance. To understand the role of the major molecular players in wheat adaptation to heat stress, the Hsf family was investigated in Triticum aestivum. Bioinformatic and phylogenetic analyses identified 56 TaHsf members, which are classified into A, B, and C classes. Many TaHsfs were constitutively expressed. Subclass A6 members were predominantly expressed in the endosperm under non-stress conditions. Upon heat stress, the transcript levels of A2 and A6 members became the dominant Hsfs, suggesting an important regulatory role during heat stress. Many TaHsfA members as well as B1, C1, and C2 members were also up-regulated during drought and salt stresses. The heat-induced expression profiles of many heat shock protein (Hsp) genes were paralleled by those of A2 and A6 members. Transactivation analysis revealed that in addition to TaHsfA members (A2b and A4e), overexpression of TaHsfC2a activated expression of TaHsp promoter-driven reporter genes under non-stress conditions, while TaHsfB1b and TaHsfC1b did not. Functional heat shock elements (HSEs) interacting with TaHsfA2b were identified in four TaHsp promoters. Promoter mutagenesis analysis demonstrated that an atypical HSE (GAACATTTTGGAA) in the TaHsp17 promoter is functional for heat-inducible expression and transactivation by Hsf proteins. The transactivation of Hsp promoter-driven reporter genes by TaHsfC2a also relied on the presence of HSE. An activation motif in the C-terminal domain of TaHsfC2a was identified by amino residue substitution analysis. These data demonstrate the role of HsfA and HsfC2 in regulation of Hsp genes in wheat.
Plant Molecular Biology | 1995
Irma Vijn; Henning Christiansen; Peter Lauridsen; Igor Kardailsky; Hans-Joachim Quandt; Inge Broer; Janneke Drenth; Erik Østergaard Jensen; Ab van Kammen; Ton Bisseling
ENOD12 is one of the first nodulin genes expressed upon inoculation with Rhizobium and also purified Nod factors are able to induce ENOD12 expression. The ENOD12 gene family in pea (Pisum sativum) has two members. A cDNA clone representing PsENOD12A [26] and a PsENOD12B genomic clone [7] have been previously described. The isolation and characterization of a PsENOD12A genomic clone is presented in this paper. By using a Vicia hirsuta-Agrobacterium rhizogenes transformation system it is shown that both genes have a similar expression pattern in transgenic V. hirsuta root nodules. Promoter analyses of both PsENOD12 promoters showed that the 200 bp immediately upstream of the transcription start are sufficient to direct nodule-specific and Nod factor-induced gene expression.
Journal of Experimental Botany | 2013
Maarten Kooiker; Janneke Drenth; Donna Glassop; C. Lynne McIntyre; Gang-Ping Xue
Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait.
Journal of Experimental Botany | 2015
Gang-Ping Xue; Janneke Drenth; C. Lynne McIntyre
Summary A wheat HsfA6 member acts as a transcriptional activator for up-regulation of a suite of heat stress protection genes including previously unknown Hsf targets such as Golgi anti-apoptotic protein.
Genome | 2008
C. L. McIntyre; Janneke Drenth; N. Gonzalez; R. G. Henzell; David Jordan
A comparison of approximately 4.5 kb of nucleotide sequence from the waxy locus (the granule-bound starch synthase I [GBSS I] locus) from a waxy line, BTxARG1, and a non-waxy line, QL39, revealed an extremely high level of sequence conservation. Among a total of 24 nucleotide differences and 9 indels, only 2 nucleotide changes resulted in altered amino acid residues. Protein folding prediction software suggested that one of the amino acid changes (Glu to His) may result in an altered protein structure, which may explain the apparently inactive GBSS I present in BTxARG1. This SNP was not found in the second waxy line, RTx2907, which does not produce GBSS I, and no other SNPs or indels were found in the approximately 4 kb of sequence obtained from RTx2907. Using one indel, the waxy locus was mapped to sorghum chromosome SBI-10, which is syntenous to maize chromosome 9; the waxy locus has been mapped to this maize chromosome. The distribution of indels in a diverse set of sorghum germplasm suggested that there are two broad types of non-waxy GBSS I alleles, each type comprising several alleles, and that the two waxy alleles in BTxARG1 and RTx2907 have evolved from one of the non-waxy allele types. The Glu/His polymorphism was found only in BTxARG1 and derived lines and has potential as a perfect marker for the BTxARG1 source of the waxy allele at the GBSS I locus. The indels correctly predicted the non-waxy phenotype in approximately 65% of diverse sorghum germplasm. The indels co-segregated perfectly with phenotype in two sorghum populations derived from crosses between a waxy and a non-waxy sorghum line, correctly identifying heterozygous lines. Thus, these indel markers or sequence-based SNP markers can be used to follow waxy alleles in sorghum breeding programs in selected pedigrees.
Plant Molecular Biology | 2013
Gang-Ping Xue; Janneke Drenth; Donna Glassop; Maarten Kooiker; C. Lynne McIntyre
Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H2O2 removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.
Plant Cell and Environment | 2018
Xiao-Jun Hu; Dandan Chen; C. Lynne Mclntyre; M. Fernanda Dreccer; Zhengbin Zhang; Janneke Drenth; Sundaravelpandian Kalaipandian; Hongping Chang; Gang-Ping Xue
High temperature at grain filling can severely reduce wheat yield. Heat shock factors (Hsfs) are central regulators in heat acclimation. This study investigated the role of TaHsfC2a, a member of the monocot-specific HsfC2 subclass, in the regulation of heat protection genes in Triticum aestivum. Three TaHsfC2a homoeologous genes were highly expressed in wheat grains during grain filling and showed only transient up-regulation in the leaves by heat stress but were markedly up-regulated by drought and abscisic acid (ABA) treatment. Overexpression of TaHsfC2a-B in transgenic wheat resulted in up-regulation of a suite of heat protection genes (e.g. TaHSP70d and TaGalSyn). Most TaHsfC2a-B target genes were heat, drought and ABA inducible. Transactivation analysis of two representative targets (TaHSP70d and TaGalSyn) showed that TaHsfC2a-B activated expression of reporters driven by these target promoters. Promoter mutagenesis analyses revealed that heat shock element is responsible for transactivation by TaHsfC2a-B and heat/drought induction. TaHsfC2a-B-overexpressing wheat showed improved thermotolerance but not dehydration tolerance. Most TaHsfC2a-B target genes were co-up-regulated in developing grains with TaHsfC2a genes. These data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.
Plant Cell Reports | 2016
Gang-Ping Xue; Anne L. Rae; Rosemary G. White; Janneke Drenth; Terese Richardson; C. Lynne McIntyre
Key messageA strong, stable and root-specific expression system was developed from a rice root-specificGLYCINE-RICH PROTEIN 7promoter for use as an enabling technology for genetic manipulation of wheat root traits.AbstractRoot systems play an important role in wheat productivity. Genetic manipulation of wheat root traits often requires a root-specific or root-predominant expression system as an essential enabling technology. In this study, we investigated promoters from rice root-specific or root-predominant expressed genes for development of a root expression system in bread wheat. Transient expression analysis using a GREEN FLUORESCENT PROTEIN (GFP) reporter gene driven by rice promoters identified six promoters that were strongly expressed in wheat roots. Extensive organ specificity analysis of three rice promoters in transgenic wheat revealed that the promoter of rice GLYCINE-RICH PROTEIN 7 (OsGRP7) gene conferred a root-specific expression pattern in wheat. Strong GFP fluorescence in the seminal and branch roots of wheat expressing GFP reporter driven by the OsGRP7 promoter was detected in epidermal, cortical and endodermal cells in mature parts of the root. The GFP reporter driven by the promoter of rice METALLOTHIONEIN-LIKE PROTEIN 1 (OsMTL1) gene was mainly expressed in the roots with essentially no expression in the leaf, stem or seed. However, it was also expressed in floral organs including glume, lemma, palea and awn. In contrast, strong expression of rice RCg2 promoter-driven GFP was found in many tissues. The GFP expression driven by these three rice promoters was stable in transgenic wheat plants through three generations (T1–T3) examined. These data suggest that the OsGRP7 promoter can provide a strong, stable and root-specific expression system for use as an enabling technology for genetic manipulation of wheat root traits.
Collaboration
Dive into the Janneke Drenth's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs