Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. M. Korendyke is active.

Publication


Featured researches published by C. M. Korendyke.


Solar Physics | 1995

The Large Angle Spectroscopic Coronagraph (LASCO)

Guenter E. Brueckner; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; Dennis G. Socker; K. P. Dere; P. L. Lamy; Antoine Llebaria; M. V. Bout; R. Schwenn; G. M. Simnett; D. K. Bedford; C. J. Eyles

The Large Angle Spectroscopic Coronagraph (LASCO) is a three coronagraph package which has been jointly developed for the Solar and Heliospheric Observatory (SOHO) mission by the Naval Research Laboratory (USA), the Laboratoire d’Astronomie Spatiale (France), the Max-Planck-Institut fur Aeronomie (Germany), and the University of Birmingham (UK). LASCO comprises three coronagraphs, C1, C2, and C3, that together image the solar corona from 1.1 to 30 R⊙ (C1: 1.1–3 R⊙, C2: 1.5–6 R⊙, and C3: 3.7 – 30 R⊙). The C1 coronagraph is a newly developed mirror version of the classic internally-occulted Lyot coronagraph, while the C2 and C3 coronagraphs are externally occulted instruments. High-resolution imaging spectroscopy of the corona from 1.1 to 3 R⊙ can be performed with the Fabry-Perot interferometer in C1. High-volume memories and a high-speed microprocessor enable extensive on-board image processing. Image compression by a factor of about 10 will result in the transmission of 10 full images per hour.


The Astrophysical Journal | 1997

Measurements of Flow Speeds in the Corona Between 2 and 30 R

N. R. Sheeley; Y.-M. Wang; Scott H. Hawley; Guenter E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; S. E. Paswaters; Dennis G. Socker; O. C. St. Cyr; P. L. Lamy; Antoine Llebaria; R. Schwenn; G. M. Simnett; S. P. Plunkett; D. A. Biesecker

Time-lapse sequences of white-light images, obtained during sunspot minimum conditions in 1996 by the Large Angle Spectrometric Coronagraph on the Solar and Heliospheric Observatory, give the impression of a continuous outflow of material in the streamer belt, as if we were observing Thomson scattering from inhomogeneities in the solar wind. Pursuing this idea, we have tracked the birth and outflow of 50-100 of the most prominent moving coronal features and find that: 1. They originate about 3-4 R☉ from Sun center as radially elongated structures above the cusps of helmet streamers. Their initial sizes are about 1 R☉ in the radial direction and 0.1 R☉ in the transverse direction. 2. They move radially outward, maintaining constant angular spans and increasing their lengths in rough accord with their speeds, which typically double from 150 km s-1 near 5 R☉ to 300 km s-1 near 25 R☉. 3. Their individual speed profiles v(r) cluster around a nearly parabolic path characterized by a constant acceleration of about 4 m s-2 through most of the 30 R☉ field of view. This profile is consistent with an isothermal solar wind expansion at a temperature of about 1.1 MK and a sonic point near 5 R☉. Based on their relatively small initial sizes, low intensities, radial motions, slow but increasing speeds, and location in the streamer belt, we conclude that these moving features are passively tracing the outflow of the slow solar wind.


The Astrophysical Journal | 2008

Heliospheric Images of the Solar Wind at Earth

N. R. Sheeley; A.D. Herbst; C.A. Palatchi; Y.-M. Wang; Russell A. Howard; John Daniel Moses; Angelos Vourlidas; Jeffrey Scott Newmark; Dennis G. Socker; Simon P. Plunkett; C. M. Korendyke; L. F. Burlaga; Joseph M. Davila; William T. Thompson; O. C. St. Cyr; R. A. Harrison; C. J. Davis; C. J. Eyles; Jean-Philippe Halain; N. B. Rich; K. Battams; E. Esfandiari; Guillermo Stenborg

During relatively quiet solar conditions throughout the spring and summer of 2007, the SECCHI HI2 white-light telescope on the STEREO B solar-orbiting spacecraft observed a succession of wave fronts sweeping past Earth. We have compared these heliospheric images with in situ plasma and magnetic field measurements obtained by near-Earth spacecraft, and we have found a near perfect association between the occurrence of these waves and the arrival of density enhancements at the leading edges of high-speed solar wind streams. Virtually all of the strong corotating interaction regions are accompanied by large-scale waves, and the low-density regions between them lack such waves. Because the Sun was dominated by long-lived coronal holes and recurrent solar wind streams during this interval, there is little doubt that we have been observing the compression regions that are formed at low latitude as solar rotation causes the high-speed wind from coronal holes to run into lower speed wind ahead of it.


The Astrophysical Journal | 1997

Origin and Evolution of Coronal Streamer Structure During the 1996 Minimum Activity Phase

Y.-M. Wang; N. R. Sheeley; Russell A. Howard; J. R. Kraemer; N. B. Rich; M. D. Andrews; G. E. Brueckner; K. P. Dere; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; S. E. Paswaters; Dennis G. Socker; P. L. Lamy; A. Llebaria; D. Vibert; R. Schwenn; G. M. Simnett

We employ coronal extrapolations of solar magnetograph data to interpret observations of the white-light streamer structure made with the LASCO coronagraph in 1996. The topological appearance of the streamer belt during the present minimum activity phase is well described by a model in which the Thomson-scattering electrons are concentrated around a single, warped current sheet encircling the Sun. Projection effects give rise to bright, jet-like structures or spikes whenever the current sheet is viewed edge-on; multiple spikes are seen if the current sheet is sufficiently wavy. The extreme narrowness of these features in polarized images indicates that the scattering layer is at most a few degrees wide. We model the evolution of the streamer belt from 1996 April to 1996 September and show that the effect of photospheric activity on the streamer belt topology depends not just on the strength of the erupted magnetic flux, but also on its longitudinal phase relative to the background field. Using flux transport simulations, we also demonstrate how the streamer belt would evolve during a prolonged absence of activity.


Applied Optics | 2006

Laboratory calibration of the Extreme-Ultraviolet Imaging Spectrometer for the Solar-B satellite

J. Lang; Barry J. Kent; Wolfgang Paustian; C. M. Brown; Christian Keyser; Mark R. Anderson; Giles C. R. Case; Rahil A. Chaudry; Adrian M. James; C. M. Korendyke; C. David Pike; Brian J. Probyn; David J. Rippington; John F. Seely; J. A. Tandy; Matthew C. R. Whillock

The laboratory end-to-end testing of the Extreme-Ultraviolet Imaging Spectrometer (EIS) for the Solar-B satellite is reported. A short overview of the EIS, which observes in two bands in the extreme-ultraviolet wavelength range, is given. The calibration apparatus is described, including details of the light sources used. The data reduction and analysis procedure are outlined. The wavelength calibration using a Penning source to illuminate the aperture fully is presented. We discuss the aperture determination using a radiometrically calibrated hollow-cathode-based source. We then give an account of the predicted and measured efficiencies from consideration of the efficiencies of individual optical elements in first order, an account of efficiencies out of band when radiation incident in one band is detected in the other, and efficiencies in multiple orders. The efficiencies measured in first order for in band and out of band are compared with the predictions and the sensitivity, and its uncertainties are derived. Application of the radiometric calibration is discussed.


Applied Optics | 2006

Optics and mechanisms for the Extreme-Ultraviolet Imaging Spectrometer on the Solar-B satellite.

C. M. Korendyke; C. M. Brown; Roger J. Thomas; Christian Keyser; Joseph M. Davila; Robert Hagood; Hirohisa Hara; Klaus Heidemann; Adrian M. James; J. Lang; John T. Mariska; John Moser; Robert W. Moye; Steven Myers; Brian J. Probyn; John F. Seely; John Shea; Ed Shepler; J. A. Tandy

The Extreme-Ultraviolet Imaging Spectrometer (EIS) is the first of a new generation of normal-incidence, two-optical-element spectroscopic instruments developed for space solar extreme-ultraviolet astronomy. The instrument is currently mounted on the Solar-B satellite for a planned launch in late 2006. The instrument observes in two spectral bands, 170-210 A and 250-290 A. The spectrograph geometry and grating prescription were optimized to obtain excellent imaging while still maintaining readily achievable physical and fabrication tolerances. A refined technique using low ruling density surrogate gratings and optical metrology was developed to align the instrument with visible light. Slit rasters of the solar surface are obtained by mechanically tilting the mirror. A slit exchange mechanism allows selection among four slits at the telescope focal plane. Each slit is precisely located at the focal plane. The spectrograph imaging performance was optically characterized in the laboratory. The resolution was measured using the Mg iii and Ne iii lines in the range of 171-200 A. The He ii line at 256 A and Ne iii lines were used in the range of 251-284 A. The measurements demonstrate an equivalent resolution of ~2 arc sec? on the solar surface, in good agreement with the predicted performance. We describe the EIS optics, mechanisms, and measured performance.


Solar Physics | 1997

First View of the Extended Green-Line Emission Corona At Solar Activity Minimum Using the Lasco-C1 Coronagraph on Soho

R. Schwenn; Bernd Inhester; S. P. Plunkett; A. Epple; B. Podlipnik; Dorothy K. Bedford; C. J. Eyles; G. M. Simnett; S. J. Tappin; Maurice V. Bout; P. L. Lamy; A. Llebaria; G. E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; Norman Edward Moulton; S. E. Paswaters; Dennis G. Socker; O. C. St. Cyr

The newly developed C1 coronagraph as part of the Large-Angle Spectroscopic Coronagraph (LASCO) on board the SOHO spacecraft has been operating since January 29, 1996. We present observations obtained in the first three months of operation. The green-line emission corona can be made visible throughout the instruments full field of view, i.e., from 1.1 R⊙ out to 3.2 R⊙ (measured from Sun center). Quantitative evaluations based on calibrations cannot yet be performed, but some basic signatures show up even now: (1) There are often bright and apparently closed loop systems centered at latitudes of 30° to 45° in both hemispheres. Their helmet-like extensions are bent towards the equatorial plane. Farther out, they merge into one large equatorial ‘streamer sheet’ clearly discernible out to 32 R⊙. (2) At mid latitudes a more diffuse pattern is usually visible, well separated from the high-latitude loops and with very pronounced variability. (3) All high-latitude structures remain stable on time scales of several days, and no signature of transient disruption of high-latitude streamers was observed in these early data. (4) Within the first 4 months of observation, only one single ‘fast’ feature was observed moving outward at a speed of 70 km s-1 close to the equator. Faster events may have escaped attention because of data gaps. (5) The centers of high-latitude loops are usually found at the positions of magnetic neutral lines in photospheric magnetograms. The large-scale streamer structure follows the magnetic pattern fairly precisely. Based on our observations we conclude that the shape and stability of the heliospheric current sheet at solar activity minimum are probably due to high-latitude streamers rather than to the near-equatorial activity belt.


The Astrophysical Journal | 1997

The Green Line Corona and Its Relation to the Photospheric Magnetic Field

Yi-Ming Wang; N. R. Sheeley; Scott H. Hawley; J. R. Kraemer; Guenter E. Brueckner; Russell A. Howard; C. M. Korendyke; D. J. Michels; Norman E. Moulton; Dennis G. Socker; R. Schwenn

Images of the green line corona made with the LASCO C1 coronagraph on SOHO are analyzed by applying current-free extrapolations to the observed photospheric field. The Fe XIV λ5303 emission is shown to be closely related to the underlying photospheric field strength. By modeling the observed intensity patterns as a function of latitude and height above the solar limb, we derive an approximate scaling law of the form nfoot ∝ Bfoot0.9, where nfoot is the density of the green line-emitting plasma and Bfoot is the average field strength at the footprints of the coronal loop. The observed high-latitude enhancements in the green line corona are attributed to the poleward concentration of the large-scale photospheric field. The strongest such enhancements occur where the high-latitude unipolar fields become reconnected to active region flux at lower latitudes; the global emission pattern rotates quasi-rigidly at the rate of the dominant active region complex. The validity of the current-free approximation is assessed by comparing the topology of the observed and simulated green line structures.


Solar Physics | 1997

The Relationship of Green-Line Transients to White-Light Coronal Mass Ejections

S. P. Plunkett; G. E. Brueckner; K. P. Dere; Russell A. Howard; M. J. Koomen; C. M. Korendyke; D. J. Michels; John Daniel Moses; Norman Edward Moulton; S. E. Paswaters; O. C. St. Cyr; Dennis G. Socker; G. M. Simnett; Dorothy K. Bedford; D. A. Biesecker; C. J. Eyles; S. J. Tappin; R. Schwenn; P. L. Lamy; Antoine Llebaria

We report observations by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft of three coronal green-line transients that could be clearly associated with coronal mass ejections (CMEs) detected in Thomson-scattered white light. Two of these events, with speeds >25 km s-1, may be classified as ‘whip-lite’ transients. They are associated with the core of the white-light CMEs, identified with erupting prominence material, rather than with the leading edge of the CMEs. The third green-line transient has a markedly different appearance and is more gradual than the other two, with a projected outward speed < 10 km s-1 . This event corresponds to the leading edge of a’ streamer blowout’ type of CME. A dark void is left behind in the emission-line corona following each of the fast eruptions. Both fast emission-line transients start off as a loop structure rising up from close to the solar surface. We suggest that the driving mechanism for these events may be the emergence of new bipolar magnetic regions on the surface of the Sun, which destabilize the ambient corona and cause an eruption. The possible relationship of these events to recent X-ray observations of CMEs is briefly discussed.


The Astrophysical Journal | 2001

On the Correlation between Coronal and Lower Transition Region Structures at Arcsecond Scales

Angelos Vourlidas; James A. Klimchuk; C. M. Korendyke; Theodore D. Tarbell; Brian Neal Handy

We compare the morphology of active region structures observed in the 171 A (T ~ 9 × 105 K) and Lyα (T ~ 2 × 104 K) lines. The coronal data were obtained by the Transition Region and Coronal Explorer (TRACE) in support of the Very High Angular Resolution Ultraviolet Telescope (VAULT) sounding rocket launch, which acquired subarcsecond resolution images of an active region in the Lyα line, on 1999 May 7. Using a pair of calibrated, nearly simultaneous images, we find that: (i) a very good correlation exists between the Lyα and 171 A intensities in the TRACE moss regions, (ii) we can identify several identical structures in some (but not all) moss areas, and (iii) the correlations are greatly reduced at the footpoints of the 171 A large-scale loops. We derive a lower limit for the Lyα emission measure, under the assumption of effectively optically thin emission, and compare it to the 171 A emission measure. As in previous studies, we find an excess of Lyα material compared to the amount expected for a thermal conduction-dominated corona-chromosphere transition region, even for structures that appear to be identical in the two wavelengths. This result implies that some other mechanism besides classical heat conduction from the corona must contribute to the observed Lyα intensities. The observations do not support the idea of a physically distinct cool loop component within active regions.

Collaboration


Dive into the C. M. Korendyke's collaboration.

Top Co-Authors

Avatar

Dennis G. Socker

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Russell A. Howard

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Angelos Vourlidas

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jeff Stanley Morrill

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Guenter E. Brueckner

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Michels

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Simon P. Plunkett

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

John Daniel Moses

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge