Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C Ma is active.

Publication


Featured researches published by C Ma.


Physics in Medicine and Biology | 2004

Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning

J Deng; Thomas Guerrero; C Ma; Ravinder Nath

The goal of this work is to build a multiple source model to represent the 6 MV photon beams from a Cyberknife stereotactic radiosurgery system for Monte Carlo treatment planning dose calculations. To achieve this goal, the 6 MV photon beams have been characterized and modelled using the EGS4/BEAM Monte Carlo system. A dual source model has been used to reconstruct the particle phase space at a plane immediately above the secondary collimator. The proposed model consists of two circular planar sources for the primary photons and the scattered photons, respectively. The dose contribution of the contaminant electrons was found to be in the order of 10(-3) of the total maximum dose and therefore has been omitted in the source model. Various comparisons have been made to verify the dual source model against the full phase space simulated using the EGS4/BEAM system. The agreement in percent depth dose (PDD) curves and dose profiles between the phase space and the source model was generally within 2%/1 mm for various collimators (5 to 60 mm in diameter) at 80 to 100 cm source-to-surface distances (SSD). Excellent agreement (within 1%/1 mm) was also found between the dose distributions in heterogeneous lung and bone geometry calculated using the original phase space and those calculated using the source model. These results demonstrated the accuracy of the dual source model for Monte Carlo treatment planning dose calculations for the Cyberknife system.


Journal of Physics: Conference Series | 2008

Implementation of Monte Carlo Dose calculation for CyberKnife treatment planning

C Ma; J Li; J Deng; J Fan

Accurate dose calculation is essential to advanced stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) especially for treatment planning involving heterogeneous patient anatomy. This paper describes the implementation of a fast Monte Carlo dose calculation algorithm in SRS/SRT treatment planning for the CyberKnife? SRS/SRT system. A superposition Monte Carlo algorithm is developed for this application. Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre-simulated using the MCSIM system. Photon interaction forcing and splitting are applied to the source photons in the patient calculation and the pre-simulated electron tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian roulette technique, in the same way as the primary photons. Dose calculations are compared with full Monte Carlo simulations performed using EGS4/MCSIM and the CyberKnife treatment planning system (TPS) for lung, head & neck and liver treatments. Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). More than 10% differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRS/SRT lung treatment while negligible differences are shown in head and neck and liver for the cases investigated. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlo dose calculations.


Medical Physics | 2009

Determination of output factors for stereotactic radiosurgery beams

J Fan; K Paskalev; L Wang; L Jin; J Li; A. Eldeeb; C Ma

Accurate dosimetry of the narrow beam tends to be difficult to perform due to the absence of lateral electronic equilibrium and the steep dose gradient, as well as the finite size of detectors. Thus, although the high dose rate 6 MV beam on the VARIAN Trilogy accelerator is increasingly utilized for stereotactic radiosurgery (SRS) treatment, there is no general agreement in the SRS beam output factor values among the Trilogy user community. Trilogy SRS beams are confined by cone collimators and the available collimator sizes range from 5 and 10 to 30 mm, in every 2 mm increment. A range of the relative output factors are in clinic use. This variation may impair observations of dose response and optimizations of the prescribed dose. It is necessary to investigate an accurate, easily performable, and detector independent method for the narrow beam output factor measurement. In this study, a scanning beam/scanning chamber method was proposed to overcome the limitation/difficulty of using a relatively large detector in narrow beam output factor measurement. Specifically, for the scanning beam method, multiple narrow beams are used for the dose measurement using a finite size chamber. These multiple scanning beams form an equivalent large uniform field which provides lateral electron equilibrium condition. After the measurement, the contributions from neighboring beams are deconvolved and the value is used for output factor determinations. For a Linac that cannot move a beam laterally, the scanning chamber method can be used to achieve the same result. The output factors determined in such a method were compared to chambers (a 0.015 cc PTW PinPoint ion chamber and a 0.125 cc PTW ion chamber) and film measurement, as well as with Monte Carlo simulation. Film and Monte Carlo results are found to be in excellent agreement with the measurement using the scan beam method. However, the VARIAN recommended output factors measured directly by Wellhöfer CC01 chamber and Scanditronix photon field diode are consistently higher for all the cones. Especially for the 5 mm cone, the difference is more than 10%. Overall, the results suggested that the new method can help overcoming the detector volume averaging effect and the positioning uncertainties, which constitute the major challenge in small radiosurgical beam output factor measurement, and provide reliable output factors.


Physics in Medicine and Biology | 2012

Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

C Ma; M Lin; X F Dai; S Koren; T Klayton; L Wang; J Li; L Chen; R Price

There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min⁻¹. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR reirradiation of recurrent cancers, which can be delivered using dynamic arc delivery techniques with ten full arcs and an effective dose rate of 6.7 ± 4.0 cGy min⁻¹.


Physics in Medicine and Biology | 2013

Investigation of pulsed IMRT and VMAT for re-irradiation treatments: dosimetric and delivery feasibilities.

M Lin; Robert A. Price; J Li; Shengwei Kang; Jie Li; C Ma

Many tumor cells demonstrate hyperradiosensitivity at doses below ~50 cGy. Together with the increased normal tissue repair under low dose rate, the pulsed low dose rate radiotherapy (PLDR), which separates a daily fractional dose of 200 cGy into 10 pulses with 3 min interval between pulses (~20 cGy/pulse and effective dose rate 6.7 cGy min−1), potentially reduces late normal tissue toxicity while still providing significant tumor control for re-irradiation treatments. This work investigates the dosimetric and technical feasibilities of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based PLDR treatments using Varian Linacs. Twenty one cases (12 real re-irradiation cases) including treatment sites of pancreas, prostate, pelvis, lung, head-and-neck, and breast were recruited for this study. The lowest machine operation dose rate (100 MU min−1) was employed in the plan delivery. Ten-field step-and-shoot IMRT and dual-arc VMAT plans were generated using the Eclipse TPS with routine planning strategies. The dual-arc plans were delivered five times to achieve a 200 cGy daily dose (~20 cGy arc−1). The resulting plan quality was evaluated according to the heterogeneity and conformity indexes (HI and CI) of the planning target volume (PTV). The dosimetric feasibility of retaining the hyperradiosensitivity for PLDR was assessed based on the minimum and maximum dose in the target volume from each pulse. The delivery accuracy of VMAT and IMRT at the 100 MU min−1 machine operation dose rate was verified using a 2D diode array and ion chamber measurements. The delivery reproducibility was further investigated by analyzing the Dynalog files of repeated deliveries. A comparable plan quality was achieved by the IMRT (CI 1.10–1.38; HI 1.04–1.10) and the VMAT (CI 1.08–1.26; HI 1.05–1.10) techniques. The minimum/maximum PTV dose per pulse is 7.9 ± 5.1 cGy/33.7 ± 6.9 cGy for the IMRT and 12.3 ± 4.1 cGy/29.2 ± 4.7 cGy for the VMAT. Six out of the 186 IMRT pulses (fields) were found to exceed 50 cGy maximum PTV dose per pulse while the maximum PTV dose per pulse was within 40 cGy for all the VMAT pulses (arcs). However, for VMAT plans, the dosimetric quality of the entire treatment plan was less superior for the breast cases and large irregular targets. The gamma passing rates for both techniques at the 100 MU min−1 dose rate were at least 94.1% (3%/3 mm) and the point dose measurements agreed with the planned values to within 2.2%. The average root mean square error of the leaf position was 0.93 ± 0.83 mm for IMRT and 0.53 ± 0.48 mm for VMAT based on the Dynalog file analysis. The RMS error of the leaf position was nearly identical for the repeated deliveries of the same plans. In general, both techniques are feasible for PLDR treatments. VMAT was more advantageous for PLDR with more uniform target dose per pulse, especially for centrally located tumors. However, for large, irregular and/or peripheral tumors, IMRT could produce more favorable PLDR plans. By taking the biological benefit of PLDR delivery and the dosimetric benefit of IMRT and VMAT, the proposed methods have a great potential for those previously-irradiated recurrent patients.


Journal of Applied Clinical Medical Physics | 2014

Measurement and Monte Carlo simulation for energy‐ and intensity‐modulated electron radiotherapy delivered by a computer‐controlled electron multileaf collimator

L Jin; A Eldib; J Li; Ismail Emam; J Fan; Lu Wang; C Ma

The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne


Journal of Physics: Conference Series | 2007

Implementation of Monte Carlo Simulations for the Gamma Knife System

W Xiong; D Huang; L Lee; J Feng; K Morris; E Calugaru; C Burman; J Li; C Ma

Currently the Gamma Knife system is accompanied with a treatment planning system, Leksell GammaPlan (LGP) which is a standard, computer-based treatment planning system for Gamma Knife radiosurgery. In LGP, the dose calculation algorithm does not consider the scatter dose contributions and the inhomogeneity effect due to the skull and air cavities. To improve the dose calculation accuracy, Monte Carlo simulations have been implemented for the Gamma Knife planning system. In this work, the 201 Cobalt-60 sources in the Gamma Knife unit are considered to have the same activity. Each Cobalt-60 source is contained in a cylindric stainless steel capsule. The particle phase space information is stored in four beam data files, which are collected in the inner sides of the 4 treatment helmets, after the Cobalt beam passes through the stationary and helmet collimators. Patient geometries are rebuilt from patient CT data. Twenty two Patients are included in the Monte Carlo simulation for this study. The dose is calculated using Monte Carlo in both homogenous and inhomogeneous geometries with identical beam parameters. To investigate the attenuation effect of the skull bone the dose in a 16cm diameter spherical QA phantom is measured with and without a 1.5mm Lead-covering and also simulated using Monte Carlo. The dose ratios with and without the 1.5mm Lead-covering are 89.8% based on measurements and 89.2% according to Monte Carlo for a 18mm-collimator Helmet. For patient geometries, the Monte Carlo results show that although the relative isodose lines remain almost the same with and without inhomogeneity corrections, the difference in the absolute dose is clinically significant. The average inhomogeneity correction is (3.9 ± 0.90) % for the 22 patients investigated. These results suggest that the inhomogeneity effect should be considered in the dose calculation for Gamma Knife treatment planning.


Physics in Medicine and Biology | 2005

A method for repositioning of stereotactic brain patients with the aid of real-time CT image guidance.

K Paskalev; S Feigenberg; L Wang; Benjamin Movsas; D Laske; C Ma

This note presents a method that recalculates the coordinates of the isocentre for patients undergoing stereotactic radiotherapy to the brain with a relocatable head frame based on a pre-treatment CT scan. The method was evaluated by comparing initial stereotactic coordinates of the isocentre with the recalculated coordinates for eight single-fraction patients. These patients had the Brown-Roberts-Wells (BRW) frame fixed to the outer table of the skull, and therefore the coordinates of any anatomical point should be identical between the initial scan and the pre-treatment scan. The differences between the two sets of coordinates were attributed to errors in the method. The results showed that the systematic errors in the recalculated coordinates were less than 0.05 mm, and they were not statistically significant. The random errors (one standard deviation) were from 0.35 mm (lateral) to 0.58 mm (vertical). The average value of the combined 3D difference was 0.75 mm.


Physics in Medicine and Biology | 2014

Investigation of the clinical potential of scattering foil free electron beams

A Eldib; L Jin; J Li; C Ma

Electron beam therapy has been an important radiation therapy modality for many decades. Studies have been conducted recently for more efficient and advanced delivery of electron beam radiation therapy. X-ray contamination is a common problem that exists with all of the advanced electron beam therapy techniques such as Bolus Electron conformal therapy, segmented electron conformal therapy, and modulated electron arc therapy. X-ray contamination could add some limitations to the advancement and clinical utility of those electron modalities. It was previously shown in the literature that the scattering foil is one of the major accelerator parts contributing to the generation of bremsstrahlung photons. Thus, in this work we investigate the dosimetric characteristics of scattering foil free (SFF) electron beams and the feasibility of using those beams for breast cancer boosts. The SFF electron beams were modeled and simulated using the Monte Carlo method. CT scans of six previously treated breast patients were used for the treatment plan generation utilizing our in-house Monte Carlo-based treatment planning system. Electron boost plans with conventional beams and the SFF beams were generated, respectively, for all patients. A significant reduction of the photon component was observed with the removal of the primary scattering foil for beam energies higher than 12 MeV. Flatness was greatly affected but the difference in flatness between conventional and SFF beams was much reduced for small cone sizes, which were often used clinically for breast boosts. It was found that the SFF electron beams could deliver high-quality dose distributions as conventional electron beams for boost treatments of the breast with an added advantage of a further reduced dose to the lung and the heart.


Medical Physics | 2007

WE-C-AUD-03: Investigation of Fast Monte Carlo Dose Calculation for CyberKnife SRS/SRT Treatment Planning

C Ma; J Li; J Deng; J Fan

Purpose: Advanced stereotactic radiosurgery(SRS) and stereotactic radiotherapy (SRT) treatments require accurate dose calculation for treatment planning especially for treatment sites involving heterogeneous patient anatomy. In this work, we have implemented a fast Monte Carlodose calculation algorithm for SRS/SRT treatment planning with the CyberKnife® system. Methods and Materials: Our system employs a superposition Monte Carlo algorithm.Photon mean free paths and interaction types for different materials and energies as well as the tracks of secondary electrons are pre‐simulated using the EGS4 code system. Photon interaction forcing and splitting are applied to the source photons in a patient calculation and the pre‐simulated tracks are repeated with proper corrections based on the tissue density and electron stopping powers. Electron energy is deposited along the tracks and accumulated in every voxel of the simulation geometry. Scattered and bremsstrahlung photons are transported, after applying the Russian Roulette technique, in the same way as the primary photons.Dose calculations are compared with full Monte Carlo simulations and the CyberKnife treatment planning system (TPS) for lung and head & neck treatments. Results: Comparisons with full Monte Carlo simulations show excellent agreement (within 0.5%). Significant differences in the target dose are found between Monte Carlo simulations and the CyberKnife TPS for SRSlung treatment. The calculation time using our superposition Monte Carlo algorithm is reduced up to 62 times (46 times on average for 10 typical clinical cases) compared to full Monte Carlo simulations. Conclusions: SRS/SRT dose distributions calculated by simple dose algorithms may be significantly overestimated for small lung target volumes, which can be improved by accurate Monte Carlodose calculations. Properly implemented fast Monte Carlo algorithms can improve dosimetric accuracy with little or no compromise to computational efficiency.

Collaboration


Dive into the C Ma's collaboration.

Top Co-Authors

Avatar

J Li

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J Fan

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Chen

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R Price

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Jin

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Wang

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

T Lin

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

A Eldib

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

I Veltchev

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

E Fourkal

Fox Chase Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge