Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Miki is active.

Publication


Featured researches published by C. Miki.


Physical Review Letters | 2007

Observations of the Askaryan Effect in Ice

P. Gorham; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet; J. Ng

We report on observations of coherent, impulsive radio Cherenkov radiation from electromagnetic showers in solid ice. This is the first observation of the Askaryan effect in ice. As part of the complete validation process for the ANITA experiment, we performed an experiment at the Stanford Linear Accelerator Center in June 2006 using a 7.5 metric ton ice target. We measure for the first time the large-scale angular dependence of the radiation pattern, a major factor in determining the solid-angle acceptance of ultrahigh-energy neutrino detectors.


Astroparticle Physics | 2009

The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for the 2006–2007 balloon flight

P. Gorham; P. Allison; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet

Abstract We present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.


Physical Review Letters | 2010

Observation of ultrahigh-energy cosmic rays with the ANITA balloon-borne radio interferometer

S. Hoover; Nam J; P. Gorham; Grashorn E; P. Allison; S. W. Barwick; J. J. Beatty; K. Belov; D. Besson; W. R. Binns; C.T. Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; Vieregg Ag; C. Hast; M. H. Israel; A. Javaid; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki

We report the observation of 16 cosmic ray events with a mean energy of 1.5 × 10¹⁹ eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2° for the event arrival directions.


Physical Review D | 2016

Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos

P. Allison; R. Bard; J. J. Beatty; David Z. Besson; C. Bora; Chih-Ching Chen; C.-H. Chen; Pisin Chen; A. Christenson; A. Connolly; Jonathan Davies; M. A. DuVernois; B. Fox; R. Gaior; P. Gorham; K. Hanson; J. Haugen; B. Hill; Kara Dion Hoffman; E. Hong; S.-Y. Hsu; L. Hu; J.-J. Huang; M.-H. A. Huang; A. Ishihara; A. Karle; J. L. Kelley; D. Kennedy; Ilya Kravchenko; T. Kuwabara

Ultrahigh energy neutrinos are interesting messenger particles since, if detected, they can transmit exclusive information about ultrahigh energy processes in the Universe. These particles, with energies above 1016 eV, interact very rarely. Therefore, detectors that instrument several gigatons of matter are needed to discover them. The ARA detector is currently being constructed at the South Pole. It is designed to use the Askaryan effect, the emission of radio waves from neutrino-induced cascades in the South Pole ice, to detect neutrino interactions at very high energies. With antennas distributed among 37 widely separated stations in the ice, such interactions can be observed in a volume of several hundred cubic kilometers. Currently three deep ARA stations are deployed in the ice, of which two have been taking data since the beginning of 2013. In this article, the ARA detector “as built” and calibrations are described. Data reduction methods used to distinguish the rare radio signals from overwhelming backgrounds of thermal and anthropogenic origin are presented. Using data from only two stations over a short exposure time of 10 months, a neutrino flux limit of 1.5 × 10−6 GeV=cm2=s=sr is calculated for a particle energy of 1018 eV, which offers promise for the full ARA detector.


Astroparticle Physics | 2008

In situ radioglaciological measurements near Taylor Dome, Antarctica and implications for ultra-high energy (UHE) neutrino astronomy

D. Besson; J. Jenkins; S. Matsuno; J. W. Nam; M. Smith; S. W. Barwick; J. J. Beatty; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; M.A. DuVernois; R. C. Field; D. Goldstein; P. Gorham; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J.T. Link; Elizabeth R. Lusczek; B. C. Mercurio; C. Miki; P. Miočinović

Radiowave detection of the Cherenkov radiation produced by neutrino-ice collisions requires an understanding of the radiofrequency (RF) response of cold polar ice. We herein report on a series of radioglaciological measurements performed approximately 10 km north of Taylor Dome Station, Antarctica from Dec. 6, 2006 - Dec. 16, 2006. Using RF signals broadcast from: a) an englacial discone, submerged to a depth of 100 meters and broadcasting to a surface dual polarization horn receiver, and b) a dual-polarization horn antenna on the surface transmitting signals which reflect off the underlying bed and back up to the surface receiver, we have made time-domain estimates of both the real (index-of-refraction) and imaginary (attenuation length) components of the complex ice dielectric constant. We have also measured the uniformity of ice response along two orthogonal axes in the horizontal plane. We observe a wavespeed asymmetry of order 0.1%, projected onto the vertical propagation axis, consistent with some previous measurements, but somewhat lower than others.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2009

IceRay: An IceCube-centered Radio-Cherenkov GZK Neutrino Detector

P. Allison; J. J. Beatty; Pisin Chen; A. Connolly; M. DuVernois; P. Gorham; F. Halzen; K. Hanson; K. D. Hoffman; A. Karle; J. L. Kelley; H. Landsman; J. G. Learned; C. Miki; Robert P. Morse; R. Nichol; C. Rott; L. Ruckman; D. Seckel; G. Varner; D. R. Williams

We discuss design considerations and simulation results for IceRay, a proposed large-scale ultra-high energy (UHE) neutrino detector at the South Pole. The array is designed to detect the coherent Askaryan radio emission from UHE neutrino interactions in the ice, with the goal of detecting the cosmogenic neutrino flux with reasonable event rates. Operating in coincidence with the IceCube neutrino detector would allow complete calorimetry of a subset of the events. We also report on the status of a testbed IceRay station which incorporates both ANITA and IceCube technology and will provide year-round monitoring of the radio environment at the South Pole.


Physical Review D | 2011

Ultra-Relativistic Magnetic Monopole Search with the ANITA-II Balloon-borne Radio Interferometer

M. Detrixhe; D. Besson; P. Gorham; P. Allison; B. Baughmann; J. J. Beatty; K. Belov; Simon Bevan; W. R. Binns; Chun Hsiung Chen; Pisin Chen; J. Clem; A. Connolly; D. De Marco; P. F. Dowkontt; M. A. DuVernois; C. Frankenfeld; E. Grashorn; D. P. Hogan; N. Griffith; B. Hill; S. Hoover; M. H. Israel; A. Javaid; Kurt Liewer; S. Matsuno; B. C. Mercurio; C. Miki; M. Mottram; J. W. Nam

We have conducted a search for extended energy deposition trails left by ultrarelativistic magnetic monopoles interacting in Antarctic ice. The nonobservation of any satisfactory candidates in the 31 days of accumulated ANITA-II (Antarctic Impulsive Transient Antenna) flight data results in an upper limit on the diffuse flux of relativistic monopoles. We obtain a 90% C.L. limit of order 10{sup -19} (cm{sup 2} s sr){sup -1} for values of Lorentz factor, {gamma}, 10{sup 10{<=}{gamma}} at the anticipated energy E{sub tot}=10{sup 16} GeV. This bound is stronger than all previously published experimental limits for this kinematic range.


Radio Science | 2015

Antarctic radio frequency albedo and implications for cosmic ray reconstruction

D. Besson; J. Stockham; M. Sullivan; P. Allison; J. J. Beatty; K. Belov; W. R. Binns; Chun Hsiung Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; P. Gorham; S. Hoover; M. H. Israel; A. Javaid; K. M. Liewer; S. Matsuno; C. Miki; M. Mottram; J. W. Nam; C. J. Naudet; R. J. Nichol; A. Romero‐Wolf; L. Ruckman; D. Saltzberg; D. Seckel; R. Y. Shang; M. Stockham; G. Varner

We describe herein a measurement of the Antarctic surface “roughness” performed by the balloon-borne ANITA (Antarctic Impulsive Transient Antenna) experiment. Originally purposed for cosmic ray astrophysics, the radio frequency (RF) receiver ANITA gondola, from its 38 km altitude vantage point, can scan a disk of snow surface 600 km in radius. The primary purpose of ANITA is to detect RF emissions from cosmic rays incident on Antarctica, such as neutrinos which penetrate through the atmosphere and interact within the ice, resulting in signal directed upward which then refracts at the ice-air interface and up and out to ANITA, or high-energy nuclei (most likely irons or protons), which interact in the upper atmosphere (at altitudes below ANITA) and produce a spray of down-coming RF which reflects off the snow surface and back up to the gondola. The energy of such high-energy nuclei can be inferred from the observed reflected signal only if the surface reflectivity is known. We describe herein an attempt to quantify the Antarctic surface reflectivity, using the Sun as a constant, unpolarized RF source. We find that the reflectivity of the surface generally follows the expectations from the Fresnel equations, lending support to the use of those equations to give an overall correction factor to calculate cosmic ray energies for all locations in Antarctica. The analysis described below is based on ANITA-II data. After launching from McMurdo Station in December 2008, ANITA-II was aloft for a period of 31 days with a typical instantaneous duty cycle exceeding 95%.


The Astrophysical Journal | 2011

THE FIRST LIMITS ON THE ULTRA-HIGH ENERGY NEUTRINO FLUENCE FROM GAMMA-RAY BURSTS

A. G. Vieregg; K. Palladino; P. Allison; B. M. Baughman; J. J. Beatty; K. Belov; D. Besson; S. Bevan; W. R. Binns; C.T. Chen; Pisin Chen; J. Clem; A. Connolly; M. Detrixhe; D. De Marco; P. F. Dowkontt; M. DuVernois; P. Gorham; Grashorn E; B. Hill; S. Hoover; M.A. Huang; M. H. Israel; A. Javaid; Kurt Liewer; S. Matsuno; B. C. Mercurio; C. Miki; M. Mottram; J. W. Nam

We set the first limits on the ultra-high energy (UHE) neutrino fluence at energies greater than 10{sup 9} GeV from gamma-ray bursts (GRBs) based on data from the second flight of the Antarctic Impulsive Transient Antenna (ANITA). During the 31 day flight of ANITA-II, 26 GRBs were recorded by Swift or Fermi. Of these, we analyzed the 12 GRBs which occurred during quiet periods when the payload was away from anthropogenic activity. In a blind analysis, we observe 0 events on a total background of 0.0044 events in the combined prompt window for all 12 low-background bursts. We also observe 0 events from the remaining 14 bursts. We place a 90% confidence level limit on the E{sup -4} prompt neutrino fluence between 10{sup 8} GeV < E < 10{sup 12} GeV of E{sup 4}{Phi} = 2.5 x 10{sup 17} GeV{sup 3} cm{sup -2} from GRB090107A. This is the first reported limit on the UHE neutrino fluence from GRBs above 10{sup 9} GeV, and the strongest limit above 10{sup 8} GeV.


arXiv: Instrumentation and Methods for Astrophysics | 2017

Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

P. Gorham; P. Allison; O. Banerjee; J. J. Beatty; K. Belov; D. Besson; W. R. Binns; V. Bugaev; P. Cao; Chun Hsiung Chen; P. Chen; J. Clem; A. Connolly; B. Dailey; P. Dasgupta; C. Deaconu; L. Cremonesi; P. F. Dowkontt; B. Fox; J. Gordon; B. Hill; R. Hupe; M. H. Israel; P. Jain; J. Kowalski; J. Lam; J. G. Learned; Kurt Liewer; T.-C. Liu; S. Matsuno

The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino or cosmic ray interaction with terrestrial matter (e.g. atmospheric or ice molecules). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice–air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Our comparison of four different reflectivity surveys, at frequencies ranging from 2 to 45GHz and at near-normal incidence, yield generally consistent maps of high versus low reflectivity, as a function of location, across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200–1000MHz, at elevation angles of 12–30∘. Consistent with our previous measurement using ANITA-2, we find good agreement, within systematic errors (dominated by antenna beam width uncertainties) and across Antarctica, with the expected reflectivity as prescribed by the Fresnel equations. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach (“HiCal-1”) was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter–receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200 and 600MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects. We discuss the science implications of the HiCal results, as well as improvements planned for HiCal-2, preparing for launch in December 2016.

Collaboration


Dive into the C. Miki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Clem

University of Delaware

View shared research outputs
Top Co-Authors

Avatar

P. Allison

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

P. F. Dowkontt

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

W. R. Binns

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Pisin Chen

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

M. H. Israel

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge