Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. H. Israel is active.

Publication


Featured researches published by M. H. Israel.


The Astrophysical Journal | 2010

RECORD-SETTING COSMIC-RAY INTENSITIES IN 2009 AND 2010

R. A. Mewaldt; A. J. Davis; K. A. Lave; R. A. Leske; E. C. Stone; M. E. Wiedenbeck; W. R. Binns; E. R. Christian; A. C. Cummings; G. A. de Nolfo; M. H. Israel; A. W. Labrador; T. T. von Rosenvinge

We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ~70 to ~450 MeV nucleon^(–1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ~20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications.


The Astrophysical Journal | 1989

Abundances of ultraheavy elements in the cosmic radiation: results from HEAO 3

W. R. Binns; T. L. Garrard; P. S. Gibner; M. H. Israel; M. P. Kertzman; J. Klarmann; B. J. Newport; E. C. Stone; C. J. Waddington

We report here an analysis that, for the first time, systematically normalizes the data from the HEAO 3 Heavy Nuclei Experiment on .the cosmic-ray abundances of all the elements heavier than germanium to that of .iron. In the range of atomic number Z, 33 ≤Z ≤60, the analysis yields abundances of odd-even element pairs. These abundances are consistent with a cosmic-ray source having a composition similar to that of the solar system, but subject to source fractionation correlated with the first ionization potential (FIP) of each element. For Z > 60, the analysis yields abundances of element groups. For these heaviest nuclei, we find an enhancement of the abundance of the platinum group, elements with 74 ≤ Z ≤ 80, relative to that in a propagated solar system source, and a corresponding increase in the abundance of the largely secondary elements in the range 62 ≤ Z ≤ 73. These abundances suggest that there is an enhancement of the r-process contribution to the source nuclei in the Z > 60 charge region. Over the entire region of charge, standard leaky box models of propagation satisfactorily model secondary production.


Physical Review Letters | 2006

Constraints on Cosmic Neutrino Fluxes from the Antarctic Impulsive Transient Antenna Experiment

S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; B. Cai; J. Clem; A. Connolly; D. F. Cowen; P. F. Dowkontt; Michael A. DuVernois; P. A. Evenson; D. Goldstein; P. Gorham; C. L. Hebert; M. H. Israel; J. G. Learned; K. M. Liewer; J. T. Link; S. Matsuno; P. Miočinović; J. W. Nam; C. J. Naudet; R. J. Nichol; K. Palladino; M. Rosen; D. Saltzberg; D. Seckel; A. Silvestri; B. T. Stokes; G. Varner

P. F. Dowkontt, 4 M. A. DuVernois,5 P. A. Evenson, 6 D. Goldstein, 1 P. W. Gorham, 9 C. L. Hebert, 9 M. H. Israel,4 J. G. Learned, 9 K. M. Liewer,10 J. T. Link,9 S. Matsuno, 9 P. Miočinović,9 J. Nam, 1 C. J. Naudet, 10 R. Nichol,2 K. Palladino, 2 M. Rosen, 9 D. Saltzberg, 7 D. Seckel, 6 A. Silvestri,1 B. T. Stokes, 9 G. S. Varner, 9 and F. Wu1 1Department of Physics and Astronomy, University of California at Irvine, Irvine, California 2Department of Physics, Ohio State University, Columbus, Ohio 3Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 4Department of Physics, Washington University in St. Louis, St. Louis, Missouri 5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 6Bartol Research Institute, University of Delaware, Newark, Delaware 7Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 8Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania 9Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 10Jet Propulsion Laboratory, Pasadena, California


The Astrophysical Journal | 2001

MEASUREMENT OF THE SECONDARY RADIONUCLIDES 10Be, 26Al, 36Cl, 54Mn, AND 14C AND IMPLICATIONS FOR THE GALACTIC COSMIC-RAY AGE

N. E. Yanasak; M. E. Wiedenbeck; R. A. Mewaldt; A. J. Davis; A. C. Cummings; J. S. George; R. A. Leske; E. C. Stone; E. R. Christian; T. T. von Rosenvinge; W. R. Binns; Paul L. Hink; M. H. Israel

We report on abundance measurements of ^(10)Be, ^(26)Al, ^(36)Cl, and ^(54)Mn in the Galactic cosmic rays (GCRs) using the Cosmic-Ray Isotope Spectrometer (CRIS) instrument aboard the Advanced Composition Explorer spacecraft at energies from ~70 to ~400 MeV nucleon^(-1). We also report an upper limit on the abundance of GCR ^(14)C. The high statistical significance of these measurements allows the energy dependence of their relative abundances to be studied. A steady-state, leaky-box propagation model, incorporating observations of the local interstellar medium (ISM) composition and density and recent partial fragmentation cross section measurements, is used to interpret these abundances. Using this model, the individual galactic confinement times derived using data for each species are consistent with a unique confinement time value of τ_(esc) = 15.0 ± 1.6 Myr. The CRIS abundance measurements are consistent with propagation through an average ISM hydrogen number density n_H = 0.34 ± 0.04 H atoms cm^(-3). The surviving fractions, f, for each radioactive species have been calculated. From predictions of the diffusion models of Ptuskin & Soutoul, the values of f indicate an interstellar cosmic-ray diffusion coefficient of D = (3.5 ± 2.0) × 10^(28) cm^2 s^(-1).


Physical Review Letters | 2007

Observations of the Askaryan Effect in Ice

P. Gorham; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet; J. Ng

We report on observations of coherent, impulsive radio Cherenkov radiation from electromagnetic showers in solid ice. This is the first observation of the Askaryan effect in ice. As part of the complete validation process for the ANITA experiment, we performed an experiment at the Stanford Linear Accelerator Center in June 2006 using a 7.5 metric ton ice target. We measure for the first time the large-scale angular dependence of the radiation pattern, a major factor in determining the solid-angle acceptance of ultrahigh-energy neutrino detectors.


Astroparticle Physics | 2009

The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for the 2006–2007 balloon flight

P. Gorham; P. Allison; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chuan-Hua Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; C. L. Hebert; S. Hoover; M. H. Israel; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki; P. Miočinović; J. W. Nam; C. J. Naudet

Abstract We present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.


Physical Review Letters | 2009

New Limits on the Ultrahigh Energy Cosmic Neutrino Flux from the ANITA Experiment

P. Gorham; Allison P; S. W. Barwick; J. J. Beatty; D. Besson; W. R. Binns; Chun Hsiung Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; A. Goodhue; C. Hast; Hebert Cl; S. Hoover; M. H. Israel; Kowalski J; J. G. Learned; Kurt Liewer; Link Jt; Elizabeth R. Lusczek; Matsuno S; B. C. Mercurio; Christian Miki; Miocinović P; J. W. Nam; C. J. Naudet

We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E(nu) approximately 3 x 10(18) eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.


Physical Review Letters | 2010

Observation of ultrahigh-energy cosmic rays with the ANITA balloon-borne radio interferometer

S. Hoover; Nam J; P. Gorham; Grashorn E; P. Allison; S. W. Barwick; J. J. Beatty; K. Belov; D. Besson; W. R. Binns; C.T. Chen; Pisin Chen; J. Clem; A. Connolly; P. F. Dowkontt; Michael A. DuVernois; R. C. Field; D. Goldstein; Vieregg Ag; C. Hast; M. H. Israel; A. Javaid; J. Kowalski; J. G. Learned; Kurt Liewer; J. T. Link; Elizabeth R. Lusczek; S. Matsuno; B. C. Mercurio; C. Miki

We report the observation of 16 cosmic ray events with a mean energy of 1.5 × 10¹⁹ eV via radio pulses originating from the interaction of the cosmic ray air shower with the Antarctic geomagnetic field, a process known as geosynchrotron emission. We present measurements in the 300-900 MHz range, which are the first self-triggered, first ultrawide band, first far-field, and the highest energy sample of cosmic ray events collected with the radio technique. Their properties are inconsistent with current ground-based geosynchrotron models. The emission is 100% polarized in the plane perpendicular to the projected geomagnetic field. Fourteen events are seen to have a phase inversion due to reflection of the radio beam off the ice surface, and two additional events are seen directly from above the horizon. Based on a likelihood analysis, we estimate angular pointing precision of order 2° for the event arrival directions.


The Astrophysical Journal | 2009

COSMIC RAY ORIGIN IN OB ASSOCIATIONS AND PREFERENTIAL ACCELERATION OF REFRACTORY ELEMENTS: EVIDENCE FROM ABUNDANCES OF ELEMENTS 26Fe THROUGH 34Se

B. F. Rauch; J. T. Link; Katharina Lodders; M. H. Israel; Loius M. Barbier; W. R. Binns; E. R. Christian; J. R. Cummings; G. A. de Nolfo; S. Geier; R. A. Mewaldt; J. W. Mitchell; S. M. Schindler; L.M. Scott; E. C. Stone; R. E. Streitmatter; C. J. Waddington; M. E. Wiedenbeck

We report abundances of elements from _(26)Fe to _(34)Se in the cosmic radiation measured during fifty days of exposure of the Trans-Iron Galactic Element Recorder (TIGER) balloon-borne instrument. These observations add support to the concept that the bulk of cosmic ray acceleration takes place in OB associations, and they further support cosmic ray acceleration models in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.


Astroparticle Physics | 2015

A first search for cosmogenic neutrinos with the ARIANNA Hexagonal Radio Array

S. W. Barwick; E. C. Berg; D. Besson; G. Binder; W. R. Binns; D.J. Boersma; R. G. Bose; D. L. Braun; J. H. Buckley; V. Bugaev; S. Buitink; K. Dookayka; P. F. Dowkontt; T. Duffin; S. Euler; L. Gerhardt; L. Gustafsson; A. Hallgren; J. Hanson; M. H. Israel; J. Kiryluk; Spencer R. Klein; Stuart Kleinfelder; H. Niederhausen; M. A. Olevitch; C. Persichelli; Kenneth L. Ratzlaff; B. F. Rauch; C. Reed; M. Roumi

The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10 − 10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor ν + ν̄ flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9×10−23 GeV−1 cm−2 s−1 sr−1 in the 10 − 10 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.

Collaboration


Dive into the M. H. Israel's collaboration.

Top Co-Authors

Avatar

W. R. Binns

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

E. C. Stone

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. A. Mewaldt

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. E. Wiedenbeck

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. C. Cummings

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. R. Christian

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

R. A. Leske

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul L. Hink

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge