Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Neil Hunter is active.

Publication


Featured researches published by C. Neil Hunter.


Nature | 2004

The native architecture of a photosynthetic membrane

S. Bahatyrova; Raoul N. Frese; C. Alistair Siebert; John D. Olsen; Kees van der Werf; Rienk van Grondelle; Robert A. Niederman; Per A. Bulough; Cees Otto; C. Neil Hunter

In photosynthesis, the harvesting of solar energy and its subsequent conversion into a stable charge separation are dependent upon an interconnected macromolecular network of membrane-associated chlorophyll–protein complexes. Although the detailed structure of each complex has been determined, the size and organization of this network are unknown. Here we show the use of atomic force microscopy to directly reveal a native bacterial photosynthetic membrane. This first view of any multi-component membrane shows the relative positions and associations of the photosynthetic complexes and reveals crucial new features of the organization of the network: we found that the membrane is divided into specialized domains each with a different network organization and in which one type of complex predominates. Two types of organization were found for the peripheral light-harvesting LH2 complex. In the first, groups of 10–20 molecules of LH2 form light-capture domains that interconnect linear arrays of dimers of core reaction centre (RC)–light-harvesting 1 (RC–LH1–PufX) complexes; in the second they were found outside these arrays in larger clusters. The LH1 complex is ideally positioned to function as an energy collection hub, temporarily storing it before transfer to the RC where photochemistry occurs: the elegant economy of the photosynthetic membrane is demonstrated by the close packing of these linear arrays, which are often only separated by narrow ‘energy conduits’ of LH2 just two or three complexes wide.


Archive | 2009

The purple phototrophic bacteria

C. Neil Hunter; Fevzi Daldal; Marion C. Thurnauer; J. Thomas Beatty

The first € price and the £ and


Journal of Biological Chemistry | 2004

Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy.

Dimitrios Fotiadis; Pu Qian; Ansgar Philippsen; Per A. Bullough; Andreas Engel; C. Neil Hunter

price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted. C.N. Hunter, F. Daldal, M.C. Thurnauer, J.Th. Beatty (Eds.) The Purple Phototrophic Bacteria


The EMBO Journal | 2004

Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides : the role of PufX

C. Alistair Siebert; Pu Qian; Dimitrios Fotiadis; Andreas Engel; C. Neil Hunter; Per A. Bullough

The bacterium Rhodospirillum rubrum contains a simple photosynthetic system, in which the reaction center (RC) receives energy from the light-harvesting (LH1) complex. We have used high-resolution atomic force microscopy (AFM) to image two-dimensional crystals of the RC-LH1 complex of R. rubrum. The AFM topographs show that the RC-LH1 complex is ∼94 Å in height, the RC-H subunit protrudes from the cytoplasmic face of the membrane by 40 Å, and it sits 21 Å above the highest point of the surrounding LH1 ring. In contrast, the RC on the periplasmic side is at a lower level than LH1, which protrudes from the membrane by 12 Å. The RC-LH1 complex can adopt an irregular shape in regions of uneven packing forces in the crystal; this reflects a likely flexibility in the natural membrane, which might be functionally important by allowing the export of quinol formed as a result of RC photochemistry. Nanodissection of the RC by the AFM tip removes the RC-H subunit and reveals the underlying RC-L and -M subunits. LH1 complexes completely lacking the RC were also found, providing ideal conditions for imaging both rings of LH1 polypeptides for the first time by AFM. In addition, we demonstrate the ellipticity of the LH1 ring at the cytoplasmic and periplasmic sides of the membrane, in both the presence and absence of the RC. These AFM measurements have been reconciled with previous electron microscopy and NMR data to produce a model of the RC-LH1 complex.


The EMBO Journal | 2002

Projection structure of the photosynthetic reaction centre–antenna complex of Rhodospirillum rubrum at 8.5 Å resolution

Stuart J. Jamieson; Peiyi Wang; Pu Qian; John Y. Kirkland; Matthew J. Conroy; C. Neil Hunter; Per A. Bullough

The effects of the PufX polypeptide on membrane architecture were investigated by comparing the composition and structures of photosynthetic membranes from PufX+ and PufX− strains of Rhodobacter sphaeroides. We show that this single polypeptide profoundly affects membrane morphology, leading to highly elongated cells containing extended tubular membranes. Purified tubular membranes contain helical arrays composed solely of dimeric RC–LH1–PufX (RC, reaction centre; LH, light harvesting) complexes with apparently open LH1 rings. PufX− cells contain crystalline membranes with a pseudo‐hexagonal packing of monomeric core complexes. Analysis of purified complexes by electron microscopy and atomic force microscopy shows that LH1 and PufX form a continuous ring of protein around each RC. A model of the tubular membrane is presented with PufX located adjacent to the stained region created by a vacant LH1β. This arrangement, coupled with a flexible ring, would give the RC QB site transient access to the interstices in the lattice, which might be of functional importance. We discuss the implications of our data for the export of quinol from the RC, for eventual reduction of the cytochrome bc1 complex.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle

Melih K. Şener; John D. Olsen; C. Neil Hunter; Klaus Schulten

Two‐dimensional crystals of the reaction‐centre–light‐harvesting complex I (RC–LH1) of the purple non‐ sulfur bacterium Rhodospirillum rubrum have been formed from detergent‐solubilized and purified protein complexes. Unstained samples of this intrinsic membrane protein complex have been analysed by electron cryomicroscopy (cryo EM). Projection maps were calculated to 8.5 Å from two different crystal forms, and show a single reaction centre surrounded by 16 LH1 subunits in a ring of ∼115 Å diameter. Within each LH1 subunit, densities for the α‐ and β‐polypeptide chains are clearly resolved. In one crystal form the LH1 forms a circular ring, and in the other form the ring is significantly ellipsoidal. In each case, the reaction centre adopts preferred orientations, suggesting specific interactions between the reaction centre and LH1 subunits rather than a continuum of possible orientations with the antenna ring. This experimentally determined structure shows no evidence of any other protein components in the closed LH1 ring. The demonstration of circular or elliptical forms of LH1 indicates that this complex is likely to be flexible in the bacterial membrane.


Journal of Biological Chemistry | 1996

Expression of the chlI, chlD, and chlH Genes from the Cyanobacterium Synechocystis PCC6803 in Escherichia coli and Demonstration That the Three Cognate Proteins Are Required for Magnesium-protoporphyrin Chelatase Activity

Poul Erik Jensen; L. C. D. Gibson; Knud W. Henningsen; C. Neil Hunter

The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll–protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, ≈70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC–LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC–LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC–LH1 dimer arrays.


Nature | 2008

Conformational changes in an ultrafast light-driven enzyme determine catalytic activity

Olga A. Sytina; Derren J. Heyes; C. Neil Hunter; Maxime T. A. Alexandre; Ivo H. M. van Stokkum; Rienk van Grondelle; Marie Louise Groot

Magnesium-protoporphyrin chelatase catalyzes the first step unique to chlorophyll synthesis: the insertion of Mg2+ into protoporphyrin IX. Genes from Synechocystis sp. PCC6803 with homology to the bchI and bchD genes of Rhodobacter sp. were cloned using degenerate oligonucleotides. The function of these genes, putatively encoding subunits of magnesium chelatase, was established by overexpression in Escherichia coli, including the overexpression of Synechocystis chlH, previously cloned as a homolog of the Rhodobacter bchH gene. The combined cell-free extracts were able to catalyze the insertion of Mg2+ into protoporphyrin IX in an ATP-dependent manner and only when the products of all three genes were present. The ChlH, ChlI, and ChlD gene products are therefore assigned to the magnesium chelatase step in chlorophyll a biosynthesis in Synechocystis PCC6803. The primary structure of the Synechocystis ChlD protein reveals some interesting features; the N-terminal half of the protein shows 40-41% identity to Rhodobacter BchI and Synechocystis ChlI, whereas the C-terminal half displays 33% identity to Rhodobacter BchD. This suggests a functional as well as an evolutionary relationship between the “I” and “D” genes.


Journal of the American Chemical Society | 2014

Zwitterionic poly(amino acid methacrylate) brushes.

Abdullah Alswieleh; Nan Cheng; Irene Canton; Burcin Ustbas; Xuan Xue; Vincent Ladmiral; Sijing Xia; Robert E. Ducker; Osama El Zubir; Michaël L. Cartron; C. Neil Hunter; Graham J. Leggett; Steven P. Armes

The role of conformational changes in explaining the huge catalytic power of enzymes is currently one of the most challenging questions in biology. Although it is now widely regarded that enzymes modulate reaction rates by means of short- and long-range protein motions, it is almost impossible to distinguish between conformational changes and catalysis. We have solved this problem using the chlorophyll biosynthetic enzyme NADPH:protochlorophyllide (Pchlide) oxidoreductase, which catalyses a unique light-driven reaction involving hydride and proton transfers. Here we report that prior excitation of the enzyme-substrate complex with a laser pulse induces a more favourable conformation of the active site, enabling the coupled hydride and proton transfer reactions to occur. This effect, which is triggered during the Pchlide excited-state lifetime and persists on a long timescale, switches the enzyme into an active state characterized by a high rate and quantum yield of formation of a catalytic intermediate. The corresponding spectral changes in the mid-infrared following the absorption of one photon reveal significant conformational changes in the enzyme, illustrating the importance of flexibility and dynamics in the structure of enzymes for their function.


Photosynthesis Research | 1996

The purple bacterial photosynthetic unit

Richard J. Cogdell; Paul K. Fyfe; Stuart J. Barrett; Stephen M. Prince; Andrew A. Freer; Neil W. Isaacs; Peter McGlynn; C. Neil Hunter

A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH.

Collaboration


Dive into the C. Neil Hunter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pu Qian

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge