Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark J. Dickman is active.

Publication


Featured researches published by Mark J. Dickman.


Science | 2008

Small CRISPR RNAs guide antiviral defense in prokaryotes

Stan J. J. Brouns; Matthijs M. Jore; Magnus Lundgren; Edze R. Westra; Rik Slijkhuis; Ambrosius P. Snijders; Mark J. Dickman; Kira S. Makarova; Eugene V. Koonin; John van der Oost

Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.


Nature Structural & Molecular Biology | 2011

Structural basis for CRISPR RNA-guided DNA recognition by Cascade

Matthijs M. Jore; Magnus Lundgren; Esther van Duijn; Jelle B. Bultema; Edze R. Westra; Sakharam Waghmare; Blake Wiedenheft; Ümit Pul; Reinhild Wurm; Rolf Wagner; Marieke R Beijer; Arjan Barendregt; Kaihong Zhou; Ambrosius P. Snijders; Mark J. Dickman; Jennifer A. Doudna; Egbert J. Boekema; Albert J. R. Heck; John van der Oost; Stan J. J. Brouns

The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.


Proceedings of the National Academy of Sciences of the United States of America | 2011

RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions.

Blake Wiedenheft; Esther van Duijn; Jelle B. Bultema; Sakharam Waghmare; Kaihong Zhou; Arjan Barendregt; Wiebke Westphal; Albert J. R. Heck; Egbert J. Boekema; Mark J. Dickman; Jennifer A. Doudna

Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequence-specific process involving a variable cassette of CRISPR-associated (cas) genes. The CRISPR locus in Pseudomonas aeruginosa (PA14) includes four cas genes that are unique to and conserved in microorganisms harboring the Csy-type (CRISPR system yersinia) immune system. Here we show that the Csy proteins (Csy1–4) assemble into a 350 kDa ribonucleoprotein complex that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences. Target recognition is enthalpically driven and localized to a “seed sequence” at the 5′ end of the CRISPR RNA spacer. Structural analysis of the complex by small-angle X-ray scattering and single particle electron microscopy reveals a crescent-shaped particle that bears striking resemblance to the architecture of a large CRISPR-associated complex from Escherichia coli, termed Cascade. Although similarity between these two complexes is not evident at the sequence level, their unequal subunit stoichiometry and quaternary architecture reveal conserved structural features that may be common among diverse CRISPR-mediated defense systems.


Journal of Molecular Biology | 2002

Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases.

Lei Zhou; Xiaodong Cheng; Bernard A. Connolly; Mark J. Dickman; Paul J. Hurd; David P. Hornby

Mechanism-based inhibitors of enzymes, which mimic reactive intermediates in the reaction pathway, have been deployed extensively in the analysis of metabolic pathways and as candidate drugs. The inhibition of cytosine-[C5]-specific DNA methyltransferases (C5 MTases) by oligodeoxynucleotides containing 5-azadeoxycytidine (AzadC) and 5-fluorodeoxycytidine (FdC) provides a well-documented example of mechanism-based inhibition of enzymes central to nucleic acid metabolism. Here, we describe the interaction between the C5 MTase from Haemophilus haemolyticus (M.HhaI) and an oligodeoxynucleotide duplex containing 2-H pyrimidinone, an analogue often referred to as zebularine and known to give rise to high-affinity complexes with MTases. X-ray crystallography has demonstrated the formation of a covalent bond between M.HhaI and the 2-H pyrimidinone-containing oligodeoxynucleotide. This observation enables a comparison between the mechanisms of action of 2-H pyrimidinone with other mechanism-based inhibitors such as FdC. This novel complex provides a molecular explanation for the mechanism of action of the anti-cancer drug zebularine.


The EMBO Journal | 2013

In vitro reconstitution of Cascade‐mediated CRISPR immunity in Streptococcus thermophilus

Tomas Sinkunas; Giedrius Gasiunas; Sakharam Waghmare; Mark J. Dickman; Rodolphe Barrangou; Philippe Horvath; Virginijus Siksnys

Clustered regularly interspaced short palindromic repeats (CRISPR)‐encoded immunity in Type I systems relies on the Cascade (CRISPR‐associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4‐Cas (CRISPR‐associated) system (St‐CRISPR4‐Cas), we isolated an effector complex (St‐Cascade) containing 61‐nucleotide CRISPR RNA (crRNA). We show that St‐Cascade, guided by crRNA, binds in vitro to a matching proto‐spacer if a proto‐spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (−1 position) of the proto‐spacer. In the presence of a correct PAM, St‐Cascade binding to the target DNA generates an R‐loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R‐loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St‐CRISPR4‐Cas and other Type I systems.


Brain | 2014

Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions

Johnathan Cooper-Knock; Matthew J. Walsh; Adrian Higginbottom; J. Robin Highley; Mark J. Dickman; Dieter Edbauer; Stephen B. Wharton; Stuart A. Wilson; Janine Kirby; Guillaume M. Hautbergue; Pamela J. Shaw

Expansion of GGGGCC repeats in C9orf72 causes familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, but the underlying mechanism is unclear. Using RNA pulldown and immunohistochemistry in ALS biosamples, Cooper-Knock et al. identify proteins that bind to the repeat expansions. Disrupted RNA splicing and/or nuclear export may underlie C9orf72-ALS pathogenesis.


Molecular Cell | 2014

Programmable rna shredding by the type iii-a crispr-cas system of streptococcus thermophilus

G. Tamulaitis; Migle Kazlauskiene; Elena Manakova; Česlovas Venclovas; Alison O. Nwokeoji; Mark J. Dickman; Philippe Horvath; Virginijus Siksnys

Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA.


Current Biology | 2009

UIF, a New mRNA Export Adaptor that Works Together with REF/ALY, Requires FACT for Recruitment to mRNA

Guillaume M. Hautbergue; Ming-Lung Hung; Matthew J. Walsh; Ambrosius P. Snijders; Chung-Te Chang; Rachel S. Jones; Chris P. Ponting; Mark J. Dickman; Stuart A. Wilson

Summary Messenger RNA (mRNA) export adaptors play an important role in the transport of mRNA from the nucleus to the cytoplasm. They couple early mRNA processing events such as 5′ capping and 3′ end formation with loading of the TAP/NXF1 export receptor onto mRNA. The canonical adaptor REF/ALY/Yra1 is recruited to mRNA via UAP56 and subsequently delivers the mRNA to NXF1 [1]. Knockdown of UAP56 [2, 3] and NXF1 [4–7] in higher eukaryotes efficiently blocks mRNA export, whereas knockdown of REF only causes a modest reduction, suggesting the existence of additional adaptors [8–10]. Here we identify a new UAP56-interacting factor, UIF, which functions as an export adaptor, binding NXF1 and delivering mRNA to the nuclear pore. REF and UIF are simultaneously found on the same mRNA molecules, and both proteins are required for efficient export of mRNA. We show that the histone chaperone FACT specifically binds UIF, but not REF, via the SSRP1 subunit, and this interaction is required for recruitment of UIF to mRNA. Together the results indicate that REF and UIF represent key human adaptors for the export of cellular mRNAs via the UAP56-NXF1 pathway.


Biochemistry | 2013

Three-Dimensional Structure of the Rhodobacter sphaeroides RC- LH1-PufX Complex: Dimerization and Quinone Channels Promoted by PufX

Pu Qian; Miroslav Z. Papiz; Philip J. Jackson; Amanda A. Brindley; Irene W. Ng; John D. Olsen; Mark J. Dickman; Per A. Bullough; C. Neil Hunter

Reaction center-light harvesting 1 (RC-LH1) complexes are the fundamental units of bacterial photosynthesis, which use solar energy to power the reduction of quinone to quinol prior to the formation of the proton gradient that drives ATP synthesis. The dimeric RC-LH1-PufX complex of Rhodobacter sphaeroides is composed of 64 polypeptides and 128 cofactors, including 56 LH1 bacteriochlorophyll a (BChl a) molecules that surround and donate energy to the two RCs. The 3D structure was determined to 8 Å by X-ray crystallography, and a model was built with constraints provided by electron microscopy (EM), nuclear magnetic resonance (NMR), mass spectrometry (MS), and site-directed mutagenesis. Each half of the dimer complex consists of a RC surrounded by an array of 14 LH1 αβ subunits, with two BChls sandwiched between each αβ pair of transmembrane helices. The N- and C-terminal extrinsic domains of PufX promote dimerization by interacting with the corresponding domains of an LH1 β polypeptide from the other half of the RC-LH1-PufX complex. Close contacts between PufX, an LH1 αβ subunit, and the cytoplasmic domain of the RC-H subunit prevent the LH1 complex from encircling the RC and create a channel connecting the RC QB site to an opening in the LH1 ring, allowing Q/QH₂ exchange with the external quinone pool. We also identified a channel that connects the two halves of the dimer, potentially forming a long-range pathway for quinone migration along rows of RC-LH1-PufX complexes in the membrane. The structure of the RC-LH1-PufX complex explains the crucial role played by PufX in dimer formation, and it shows how quinone traffic traverses the LH1 complex as it shuttles between the RC and the cytochrome bc₁ complex.


Science | 2011

A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A.

A. Cruz-Migoni; Guillaume M. Hautbergue; Peter J. Artymiuk; Patrick J. Baker; Monika Bokori-Brown; Chung-Te Chang; Mark J. Dickman; Angela E. Essex-Lopresti; Sarah V. Harding; Nor Muhammad Mahadi; Laura E. Marshall; G.W. W. Mobbs; Rahmah Mohamed; Sheila Nathan; Sarah A. Ngugi; Catherine Ong; Wen Fong Ooi; Lynda J. Partridge; Helen L. Phillips; M.F. F. Raih; Sergey N. Ruzheinikov; Mitali Sarkar-Tyson; Svetlana E. Sedelnikova; Sophie J. Smither; Patrick Tan; Richard W. Titball; Stuart A. Wilson; David W. Rice

A toxin associated with a disease often observed in Vietnam veterans is identified and characterized. The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.

Collaboration


Dive into the Mark J. Dickman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge