Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. O. Lee is active.

Publication


Featured researches published by C. O. Lee.


Science | 2017

Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage

Hongtao Sun; Lin Mei; Junfei Liang; Zipeng Zhao; C. O. Lee; Huilong Fei; Mengning Ding; Jonathan Lau; Mufan Li; Chen Wang; Xu Xu; Guolin Hao; Benjamin Papandrea; Imran Shakir; Bruce Dunn; Yu Huang; Xiangfeng Duan

As with donuts, the holes matter Improving the density of stored charge and increasing the speed at which it can move through a material are usually opposing objectives. Sun et al. developed a Nb2O5/holey graphene framework composite with tailored porosity. The three-dimensional, hierarchically porous holey graphene acted as a conductive scaffold to support Nb2O5. A high mass loading and improved power capability were reached by tailoring the porosity in the holey graphene backbone with higher charge transport in the composite architecture. The interconnected graphene network provided excellent electron transport, and the hierarchical porous structure in the graphene sheets facilitated rapid ion transport and mitigated diffusion limitations. Science, this issue p. 599 A graphene/Nb2O5 composite shows optimized electron and ion transport. Nanostructured materials have shown extraordinary promise for electrochemical energy storage but are usually limited to electrodes with rather low mass loading (~1 milligram per square centimeter) because of the increasing ion diffusion limitations in thicker electrodes. We report the design of a three-dimensional (3D) holey-graphene/niobia (Nb2O5) composite for ultrahigh-rate energy storage at practical levels of mass loading (>10 milligrams per square centimeter). The highly interconnected graphene network in the 3D architecture provides excellent electron transport properties, and its hierarchical porous structure facilitates rapid ion transport. By systematically tailoring the porosity in the holey graphene backbone, charge transport in the composite architecture is optimized to deliver high areal capacity and high-rate capability at high mass loading, which represents a critical step forward toward practical applications.


Nano Letters | 2015

Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors

Yuxi Xu; Chih-Yen Chen; Zipeng Zhao; Zhaoyang Lin; C. O. Lee; Xu Xu; Chen Wang; Yu Huang; Muhammad Imran Shakir; Xiangfeng Duan

Scalable preparation of solution processable graphene and its bulk materials with high specific surface areas and designed porosities is essential for many practical applications. Herein, we report a scalable approach to produce aqueous dispersions of holey graphene oxide with abundant in-plane nanopores via a convenient mild defect-etching reaction and demonstrate that the holey graphene oxide can function as a versatile building block for the assembly of macrostructures including holey graphene hydrogels with a three-dimensional hierarchical porosity and holey graphene papers with a compact but porous layered structure. These holey graphene macrostructures exhibit significantly improved specific surface area and ion diffusion rate compared to the nonholey counterparts and can be directly used as binder-free supercapacitor electrodes with ultrahigh specific capacitances of 283 F/g and 234 F/cm(3), excellent rate capabilities, and superior cycling stabilities. Our study defines a scalable pathway to solution processable holey graphene materials and will greatly impact the applications of graphene in diverse technological areas.


Science | 2015

MAVEN observations of the response of Mars to an interplanetary coronal mass ejection

Bruce M. Jakosky; Joseph M. Grebowsky; J. G. Luhmann; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; J. S. Halekas; D. Larson; P. Mahaffy; J. P. McFadden; D. F. Mitchell; Nicholas M. Schneider; Richard W. Zurek; S. W. Bougher; D. A. Brain; Y. J. Ma; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary

Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.


Inorganic Chemistry | 2010

Ring-Opening Reactions within Porous Metal―Organic Frameworks

David Britt; C. O. Lee; Fernando J. Uribe-Romo; Hiroyasu Furukawa; Omar M. Yaghi

Two new metal-organic framework (MOF) structures, IRMOF-3b and -3c, were prepared by ring-opening reaction of 1,3-propanesultone and 2-methylaziridine with an amine functionalized MOF, IRMOF-3. The new structures are permanently functionalized with covalently linked sulfonate and alkyamine units, respectively. The underlying framework structure is retained after reaction as confirmed by powder X-ray diffraction. The high porosity of IRMOF-3 is also maintained, as evidenced by nitrogen adsorption experiments, which yield Brunauer-Emmett-Teller (BET) surface areas of 1380 and 530 m(2) g(-1) compared to 2040 m(2) g(-1) in the parent material. Ring-opening reactions provide a versatile route to irreversible binding of a range of functionalities that are otherwise difficult to access in MOFs.


Science | 2015

Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability

S. W. Bougher; Bruce M. Jakosky; J. S. Halekas; Joseph M. Grebowsky; J. G. Luhmann; P. Mahaffy; J. E. P. Connerney; F. G. Eparvier; R. E. Ergun; D. Larson; J. P. McFadden; D. L. Mitchell; Nicholas M. Schneider; Richard W. Zurek; C. Mazelle; L. Andersson; D. J. Andrews; D. Baird; D. N. Baker; J. M. Bell; Mehdi Benna; D. A. Brain; M. S. Chaffin; Phillip C. Chamberlin; Y.-Y. Chaufray; John Clarke; Glyn Collinson; Michael R. Combi; Frank Judson Crary; T. E. Cravens

The Mars Atmosphere and Volatile Evolution (MAVEN) mission, during the second of its Deep Dip campaigns, made comprehensive measurements of martian thermosphere and ionosphere composition, structure, and variability at altitudes down to ~130 kilometers in the subsolar region. This altitude range contains the diffusively separated upper atmosphere just above the well-mixed atmosphere, the layer of peak extreme ultraviolet heating and primary reservoir for atmospheric escape. In situ measurements of the upper atmosphere reveal previously unmeasured populations of neutral and charged particles, the homopause altitude at approximately 130 kilometers, and an unexpected level of variability both on an orbit-to-orbit basis and within individual orbits. These observations help constrain volatile escape processes controlled by thermosphere and ionosphere structure and variability.


Science | 2015

Discovery of diffuse aurora on Mars

Nicholas M. Schneider; Justin Deighan; S. K. Jain; Arnaud Stiepen; A. I. F. Stewart; D. Larson; David L. Mitchell; C. Mazelle; C. O. Lee; Robert J. Lillis; J. S. Evans; D. A. Brain; Michael H. Stevens; William E. McClintock; M. S. Chaffin; M. Crismani; Gregory M. Holsclaw; Franck Lefèvre; D. Y. Lo; John Clarke; Franck Montmessin; Bruce M. Jakosky

Planetary auroras reveal the complex interplay between an atmosphere and the surrounding plasma environment. We report the discovery of low-altitude, diffuse auroras spanning much of Mars’ northern hemisphere, coincident with a solar energetic particle outburst. The Imaging Ultraviolet Spectrograph, a remote sensing instrument on the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, detected auroral emission in virtually all nightside observations for ~5 days, spanning nearly all geographic longitudes. Emission extended down to ~60 kilometer (km) altitude (1 microbar), deeper than confirmed at any other planet. Solar energetic particles were observed up to 200 kilo–electron volts; these particles are capable of penetrating down to the 60 km altitude. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit auroras more globally than Earth.


Nature Catalysis | 2018

General synthesis and definitive structural identification of MN 4 C 4 single-atom catalysts with tunable electrocatalytic activities

Huilong Fei; J. Dong; Yexin Feng; Christopher S. Allen; Chengzhang Wan; Boris Volosskiy; Mufan Li; Zipeng Zhao; Yiliu Wang; Hongtao Sun; Pengfei An; Wenxing Chen; Zhiying Guo; C. O. Lee; Dongliang Chen; Imran Shakir; Mingjie Liu; Tiandou Hu; Yadong Li; Angus I. Kirkland; Xiangfeng Duan; Yu Huang

AbstractSingle-atom catalysts (SACs) have recently attracted broad research interest as they combine the merits of both homogeneous and heterogeneous catalysts. Rational design and synthesis of SACs are of immense significance but have so far been plagued by the lack of a definitive correlation between structure and catalytic properties. Here, we report a general approach to a series of monodispersed atomic transition metals (for example, Fe, Co, Ni) embedded in nitrogen-doped graphene with a common MN4C4 moiety, identified by systematic X-ray absorption fine structure analyses and direct transmission electron microscopy imaging. The unambiguous structure determination allows density functional theoretical prediction of MN4C4 moieties as efficient oxygen evolution catalysts with activities following the trend Ni > Co > Fe, which is confirmed by electrochemical measurements. Determination of atomistic structure and its correlation with catalytic properties represents a critical step towards the rational design and synthesis of precious or nonprecious SACs with exceptional atom utilization efficiency and catalytic activities.Atomically dispersed metal catalysts are of increasing importance in many catalytic processes, but clear structural identification is challenging. Here, a general synthesis of metal (nickel, iron and cobalt) single-atom catalysts on nitrogen-doped graphene allows the authors to identify a common structure and furthermore correlate structure with electrocatalytic activity.


Nano Letters | 2015

High Surface Area Tunnels in Hexagonal WO3

Wanmei Sun; Michael T. Yeung; Andrew T. Lech; Cheng-Wei Lin; C. O. Lee; Tianqi Li; Xiangfeng Duan; Jun Zhou; Richard B. Kaner

High surface area in h-WO3 has been verified from the intracrystalline tunnels. This bottom-up approach differs from conventional templating-type methods. The 3.67 Å diameter tunnels are characterized by low-pressure CO2 adsorption isotherms with nonlocal density functional theory fitting, transmission electron microscopy, and thermal gravimetric analysis. These open and rigid tunnels absorb H(+) and Li(+), but not Na(+) in aqueous electrolytes without inducing a phase transformation, accessing both internal and external active sites. Moreover, these tunnel structures demonstrate high specific pseudocapacitance and good stability in an H2SO4 aqueous electrolyte. Thus, the high surface area created from 3.67 Å diameter tunnels in h-WO3 shows potential applications in electrochemical energy storage, selective ion transfer, and selective gas adsorption.


Journal of the American Chemical Society | 2016

Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity

Demetrius A. Vazquez-Molina; Gavin S. Mohammad-Pour; C. O. Lee; Matthew W. Logan; Xiangfeng Duan; James K. Harper; Fernando J. Uribe-Romo

Covalent organic frameworks (COFs) usually crystallize as insoluble powders, and their processing for suitable devices is thought to be limited. We demonstrate that COFs can be mechanically pressed into shaped objects having anisotropic ordering with preferred orientation between hk0 and 00l crystallographic planes. Five COFs with different functionality and symmetry exhibited similar crystallographic behavior and remarkable stability, indicating the generality of this processing. Pellets prepared from bulk COF powders impregnated with LiClO4 displayed room temperature conductivity up to 0.26 mS cm(-1) and high electrochemical stability. This outcome portends use of COFs as solid-state electrolytes in batteries.


ACS Nano | 2014

A Rational Biomimetic Approach to Structure Defect Generation in Colloidal Nanocrystals

Lingyan Ruan; Hadi Ramezani-Dakhel; C. O. Lee; Yongjia Li; Xiangfeng Duan; Hendrik Heinz; Yu Huang

Controlling the morphology of nanocrystals (NCs) is of paramount importance for both fundamental studies and practical applications. The morphology of NCs is determined by the seed structure and the following facet growth. While means for directing facet formation in NC growth have been extensively studied, rational strategies for the production of NCs bearing structure defects in seeds have been much less explored. Here, we report mechanistic investigations of high density twin formation induced by specific peptides in platinum (Pt) NC growth, on the basis of which we derive principles that can serve as guidelines for the rational design of molecular surfactants to introduce high yield twinning in noble metal NC syntheses. Two synergistic factors are identified in producing twinned Pt NCs with the peptide: (1) the altered reduction kinetics and crystal growth pathway as a result of the complex formation between the histidine residue on the peptide and Pt ions, and (2) the preferential stabilization of {111} planes upon the formation of twinned seeds. We further apply the discovered principles to the design of small organic molecules bearing similar binding motifs as ligands/surfactants to create single and multiple twinned Pd and Rh NCs. Our studies demonstrate the rich information derived from biomimetic synthesis and the broad applicability of biomimetic principles to NC synthesis for diverse property tailoring.

Collaboration


Dive into the C. O. Lee's collaboration.

Top Co-Authors

Avatar

Bruce M. Jakosky

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. A. Brain

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

J. G. Luhmann

University of California

View shared research outputs
Top Co-Authors

Avatar

D. Larson

University of California

View shared research outputs
Top Co-Authors

Avatar

J. R. Espley

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. M. Curry

University of California

View shared research outputs
Top Co-Authors

Avatar

Takuya Hara

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiangfeng Duan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge