Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. P. Yu.
Journal of Neurosurgery | 2009
C. P. Yu; Joel Yiu Chung Cheung; Samuel Leung; Robert T. K. Ho
The purpose of this paper was to note a potential source of error in magnetic resonance (MR) imaging. Magnetic resonance images were acquired for stereotactic planning for GKS of a vestibular schwannoma in a female patient. The images were acquired using three-dimensional sequence, which has been shown to produce minimal distortion effects. The images were transferred to the planning workstation, but the coronal images were rejected. By examination of the raw data and reconstruction of sagittal images through the localizer side plate, it was clearly seen that the image of the square localizer system was grossly distorted. The patient was returned to the MR imager for further studies and a metal clasp on her brassiere was identified as the cause of the distortion.A-60-year-old man with medically intractable left-sided maxillary division trigeminal neuralgia had severe cardiac disease, was dependent on an internal defibrillator and could not undergo magnetic resonance imaging. The patient was successfully treated using computerized tomography (CT) cisternography and gamma knife radiosurgery. The patient was pain free 2 months after GKS. Contrast cisternography with CT scanning is an excellent alternative imaging modality for the treatment of patients with intractable trigeminal neuralgia who are unable to undergo MR imaging.The authors describe acute deterioration in facial and acoustic neuropathies following radiosurgery for acoustic neuromas. In May 1995, a 26-year-old man, who had no evidence of neurofibromatosis Type 2, was treated with gamma knife radiosurgery (GKS; maximum dose 20 Gy and margin dose 14 Gy) for a right-sided intracanalicular acoustic tumor. Two days after the treatment, he developed headache, vomiting, right-sided facial weakness, tinnitus, and right hearing loss. There was a deterioration of facial nerve function and hearing function from pretreatment values. The facial function worsened from House-Brackmann Grade 1 to 3. Hearing deteriorated from Grade 1 to 5. Magnetic resonance (MR) images, obtained at the same time revealed an obvious decrease in contrast enhancement of the tumor without any change in tumor size or peritumoral edema. Facial nerve function improved gradually and increased to House-Brackmann Grade 2 by 8 months post-GKS. The tumor has been unchanged in size for 5 years, and facial nerve function has also been maintained at Grade 2 with unchanged deafness. This is the first detailed report of immediate facial neuropathy after GKS for acoustic neuroma and MR imaging revealing early possibly toxic changes. Potential explanations for this phenomenon are presented.In clinical follow-up studies after radiosurgery, imaging modalities such as computerized tomography (CT) and magnetic resonance (MR) imaging are used. Accurate determination of the residual lesion volume is necessary for realistic assessment of the effects of treatment. Usually, the diameters rather than the volume of the lesion are measured. To determine the lesion volume without using stereotactically defined images, the software program VOLUMESERIES has been developed. VOLUMESERIES is a personal computer-based image analysis tool. Acquired DICOM CT scans and MR image series can be visualized. The region of interest is contoured with the help of the mouse, and then the system calculates the volume of the contoured region and the total volume is given in cubic centimeters. The defined volume is also displayed in reconstructed sagittal and coronal slices. In addition, distance measurements can be performed to measure tumor extent. The accuracy of VOLUMESERIES was checked against stereotactically defined images in the Leksell GammaPlan treatment planning program. A discrepancy in target volumes of approximately 8% was observed between the two methods. This discrepancy is of lesser interest because the method is used to determine the course of the target volume over time, rather than the absolute volume. Moreover, it could be shown that the method was more sensitive than the tumor diameter measurements currently in use. VOLUMESERIES appears to be a valuable tool for assessing residual lesion volume on follow-up images after gamma knife radiosurgery while avoiding the need for stereotactic definition.This study was conducted to evaluate the geometric distortion of angiographic images created from a commonly used digital x-ray imaging system and the performance of a commercially available distortion-correction computer program. A 12 x 12 x 12-cm wood phantom was constructed. Lead shots, 2 mm in diameter, were attached to the surfaces of the phantom. The phantom was then placed inside the angiographic localizer. Cut films (frontal and lateral analog films) of the phantom were obtained. The films were analyzed using GammaPlan target series 4.12. The same procedure was repeated with a digital x-ray imaging system equipped with a computer program to correct the geometric distortion. The distortion of the two sets of digital images was evaluated using the coordinates of the lead shots from the cut films as references. The coordinates of all lead shots obtained from digital images and corrected by the computer program coincided within 0.5 mm of those obtained from cut films. The average difference is 0.28 mm with a standard deviation of 0.01 mm. On the other hand, the coordinates obtained from digital images with and without correction can differ by as much as 3.4 mm. The average difference is 1.53 mm, with a standard deviation of 0.67 mm. The investigated computer program can reduce the geometric distortion of digital images from a commonly used x-ray imaging system to less than 0.5 mm. Therefore, they are suitable for the localization of arteriovenous malformations and other vascular targets in gamma knife radiosurgery.
Physics in Medicine and Biology | 1999
Joel Y. C. Cheung; K.N. Yu; Robert T K Ho; C. P. Yu
The Leksell Gamma Knife is a standard radiosurgical tool for treating brain lesions by directing beams of gamma radiation to a specific region. The diameter of the gamma beams is confined by collimator systems and available collimator sizes are 4, 8, 14 and 18 mm. The reduction in dose rate for each collimator helmet is called the output factor (OPF). Experimental determination of OPFs is difficult due to the extremely narrow beams for which the dose is determined. In the present work, the PRESTA version of the EGS4 Monte Carlo code was used to obtain relative OPFs for the Leksell Gamma Knife for collimator sizes of 14, 8 and 4 mm (relative to that of the 18 mm collimator). A spherical probe with a radius of 1 mm was utilized in this computer experiment. Our Monte Carlo results gave OPFs of 0.974, 0.951 and 0.872 for the 14 mm, 8 mm and 4 mm collimators respectively, relative to the 18 mm collimator. Our calculated OPF for the 4 mm collimator helmet was more than 8% higher than the value currently used, but in good agreement with the average of experimental values obtained by various Gamma Knife centres throughout the world and with the value now recommended by the manufacturer, Elekta (Elekta Instrument AB, Skeppargatan 8, S-114 52 Stockholm, Sweden).
Medical Physics | 1998
Joel Y. C. Cheung; K.N. Yu; C. P. Yu; Robert T. K. Ho
The accuracy of single-beam dose profiles used in the algorithm of the Gamma Knife treatment planning system (Leksell GammaPlan) is verified. EGS4 Monte Carlo calculation was employed to calculate the dose distributions of single-beams in a spherical water phantom with diameter 160 mm. The beams were directed to the center of the phantom. Collimators of 4, 8, 14, and 18 mm sizes were studied. The single-beam dose profiles provided by Elekta (Manufacturer of Leksell Gamma Knife) were excellently consistent with the results of Monte Carlo for the 4, 14, and 18 mm collimators. The maximum discrepancy was less than 3% at all radial distances. For the 8 mm collimator, the maximum discrepancy was 8% in the relative dose in the radial distance range from 4.3 mm to 5.2 mm. Excellent agreement in dose profiles along x, y, and z axes for all collimator helmets by summing over all 201 sources was observed between the cases using the default single-beam dose profiles and the calculated Monte Carlo results, except for the 8 mm collimator helmet along z axis. Such difference may however be too small to give a clinical significance.
Stereotactic and Functional Neurosurgery | 2003
Motohiro Hayashi; Takaomi Taira; Mikhail Chernov; Masahiro Izawa; Roman Liscak; C. P. Yu; Robert T.K. Ho; Yoko Katayama; Nobuo Kouyama; Yoriko Kawakami; Tomokatsu Hori; Kintomo Takakura
Rationale: Two or three decades ago, cancer pain was treated by surgical/chemical hypophysectomy. In one report, the control of central pain (thalamic pain syndrome) was also approached with chemical hypophysectomy. Although in most of the patients these treatments resulted in a decrease in severe pain, concomitantly severe adverse effects (panhypopituitarism, diabetes insipidus and visual dysfunction) occurred in most patients. This historical evidence prompted us to perform Gamma Knife surgery (GKS) for this kind of intractable severe pain using a high irradiation dose to the pituitary stalk/gland. In the majority of patients, marked pain relief was achieved, surprisingly without any of the complications mentioned above. Materials and Methods: A prospective multicenter study was conducted to evaluate the efficacy and safety in patients treated in Prague, Hong Kong and Tokyo. Indications of this treatment were: (1) failure of other effective treatment approaches prior to GKS, (2) good general patient condition (Karnofsky performance status >40%), (3) response to morphine for pain control (cancer pain), and (4) no previous radiotherapy of brain metastases (GKS/conventional radiotherapy). Eight patients with severe cancer pain due to bone metastasis and 12 patients with post-stroke thalamic pain syndrome were treated with GKS. The target was the border between the pituitary stalk and gland. Maximum dose was 160 Gy for cancer pain and 140 Gy for central pain. Follow-up included 6 patients (>1 month) with cancer pain and 8 patients (> 6 months) with thalamic pain syndrome. Results: All patients (6/6) with cancer pain experienced significant pain reduction, and 87.5% (7/8) of the patients with thalamic pain had initially significant pain reduction. In some patients, pain reduction was delayed for several hours. Pain relief was noted within 7 days (median 2 days). No recurrence was observed in the patients with cancer pain. However, in 71.4% (5/7) of the patients with thalamic pain syndrome, disease recurred during the 6-month follow-up. Up to now, other complications have not been observed. Conclusion: Our clinical study protocol is only preliminary. Further clinical results on the management of thalamic pain are required to develop this treatment protocol. However, efficacy and safety have been shown in all our cases. In our opinion, this treatment has a potential to control severe pain, and GKS will play an important role in the management of intractable pain.
Medical Physics | 1999
Joel Y. C. Cheung; K.N. Yu; Robert T. K. Ho; C. P. Yu
The Monte Carlo technique and GafChromic films were employed to verify the accuracy of the dose planning system (Leksell GammaPlan) used in Gamma Knife (type B) radiosurgery when plugged collimator helmets were used. The EGS4 Monte Carlo code was used to calculate the dose distribution along the x, y, and z axes when a single shot was delivered at the center point (unit center point: x = 100, y = 100, z = 100) of a spherical polystyrene phantom, with gamma angle of 90 degrees. Two different sizes of the plugged collimator helmets, 4 and 18 mm, were studied. Two typical plugged patterns, 51 plugs and 99 plugs along the y direction, were examined. The results of our Monte Carlo trials showed good consistency with GammaPlan calculations and GafChromic film measurements. Furthermore, the Monte Carlo results showed that radiation leakage from the plugs was too small to affect the overall isodose curve distribution even when the heavily plugged pattern of up to 99 plugs was employed. The results of this project provide confidence to all Gamma Knife centers using the Leksell GammaPlan treatment planning system.
Medical Physics | 2003
Joel Y. C. Cheung; K.N. Yu; Josie F. K. Chan; Robert T. K. Ho; C. P. Yu
Materials with high atomic numbers favor the occurrence of the photoelectric effect when they are irradiated with gamma rays. Therefore, the photoelectric effects of metal implants within the target regions in Gamma Knife Radiosurgery are worth studying. In the present work, Monte Carlo simulations using EGS4 were employed to investigate the resulting dose enhancements. A dose enhancement as high as 10% was observed close to a platinum implant along the x and y axes, while no significant dose enhancements were observed for silver, stainless steel 301, and titanium ones. A dose enhancement as high as 20% was observed close to the platinum implant along the z axis at the superior position of the metal-phantom interface and was 10% higher for other metal implants.
Journal of Neurosurgery | 2005
C. P. Yu; Joel Y. C. Cheung; Josie F. K. Chan; Samuel C. L. Leung; Robert T. K. Ho
OBJECT The authors analyzed the factors involved in determining prolonged survival (≥ 24 months) in patients with brain metastases treated by gamma knife surgery (GKS). METHODS Between 1995 and 2003, a total of 116 patients underwent 167 GKS procedures for brain metastases. There was no special case selection. Smaller and larger lesions were treated with different protocols. The mean patient age was 56.9 years, the mean number of initial lesions was 3.15, and the mean lesion volume was 10.45 cm.3 The mean follow-up time was 9.2 months. The median patient survival was 8.68 months. One-, 2-, 3-, 4-, and 5-year actuarial survival rates were 31.8%, 19.8%, 14.6%, 7.7%, and 6.9%, respectively. Patient age, number of lesions at presentation, and lesion volume had no influence on patient survival. Twenty-three (19.8%) patients survived for 24 months or more. Certain factors were associated with increased survival time. These were stable primary disease (21 of 23 patients), a long latency between diagnosis of the primary tumor and the occurrence of brain metastases (mean 28.4 months, median 16 months), absence of third-organ involvement, and repeated local procedures. Ten patients underwent repeated GKS (mean 3.4 per patient). Seven patients required open surgery for local treatment failures (recurrence or radiation necrosis). Two patients had both. Fifteen patients underwent repeated procedures. CONCLUSIONS Aggressive local therapy with GKS, repeated GKS, and GKS plus surgery can achieve increased survival in a subgroup of patients with stable primary disease, no third-organ involvement, and long primary-brain secondary intervals.
Medical Physics | 2002
Joel Y. C. Cheung; K.N. Yu; C. P. Yu; Robert T. K. Ho
In calculations for the Leksell Gamma Knife, GammaPlan employs a tissue equivalent material without the presence of a skull bone, while dosimetry work is based on a polystyrene phantom. The compatibility of these dose distributions is uncertain. The Monte Carlo technique was employed to determine the radial dose distributions from a single 14 mm collimator helmet in 160 mm diam phantoms with different materials. The materials studied were polystyrene, perspex, water, and water with skull bone. Results showed no significant differences among the radial doses in different phantom materials for the 14 mm collimator helmet. The Monte Carlo simulation was repeated with the inclusion of all 201 sources. Again, no significant differences were observed.
Stereotactic and Functional Neurosurgery | 1998
J.Y.C. Cheung; C. P. Yu; R.T.K. Ho
The GammaPlan provides accurate estimation of target volume. However, a stereotactic frame and fiducials are required. At follow-up MR/CT, fiducials are no longer available. Surgeons rely on visual impression, 2-D measurements, or other methods to estimate the volume of the treated targets. These methods are not objective and may give rise to misleading conclusions. By modifying the image header files of GammaPlan version 3, it is possible to scale the images which are not acquired with stereotactic fiducials. The target is then mapped and its volume measured as usual. The target volumes in 7 patients were measured by the tweaked GammaPlan and compared with volume measurements using the standard version. The mean error was less than 2%. In a separate study, phantom syringes with known volumes of water were used for MR imaging. The tweaked version again gave accurate volume estimation of the phantom syringes with a less than 5% error for most cases. This method has subsequently been used in all Gamma Knife follow-up cases. Significant volume changes have been detected where conventional assessment showed no apparent change. Moreover, such volume changes correlated with clinical improvement or deterioration. It is recommended that all Gamma Knife users report tumor response by volume change. Our method is simple, reliable and does not require additional cost.
Medical Physics | 2007
Joel Y. C. Cheung; K. P. Ng; C. P. Yu; Robert T. K. Ho
We investigated the amplification of discrepancy when using multiple shots of the same collimator size helmet, by comparing dose plans in the Leksell GammaPlan® employing the default single-beam dose profiles and the Monte Carlo generated single-beam profiles. Four collimator helmets were studied. The results show that the largest amplification of discrepancy with multiple shots was found with the 8 mm collimator because of the largest discrepancy of its single-beam dose profile. The amplification of discrepancy is significant when tumor volumes increase but insignificant when the tumor volumes are in an elongated shape. Using close shot overlapping strategy (i.e., more shots close packed together) shows no observable increase in the amplification of discrepancy. For the best quality of Leksell Gamma Knife® radiosurgery, it is suggested that the single-beam dose profiles should be refined, especially the 8 mm collimator, to prevent error amplification when using multiple collimator shots.