Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Pistillo is active.

Publication


Featured researches published by C. Pistillo.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2006

Hardware performance of a scanning system for high speed analysis of nuclear emulsions

L. Arrabito; E. Barbuto; C. Bozza; S. Buontempo; L. Consiglio; D. Coppola; M. Cozzi; J. Damet; N. D’Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; D. Di Marco; Luigi Salvatore Esposito; G. Giacomelli; G. Grella; M. Hauger; F. Juget; I. Kreslo; M. Giorgini; M. Ieva; Imad Baptiste Laktineh; K. Manai; G. Mandrioli; A. Marotta; S. Manzoor; P. Migliozzi; P. Monacelli; M.T. Muciaccia

The use of nuclear emulsions in very large physics experiments is now possible thanks to the recent improvements in the industrial production of emulsions and to the development of fast automated microscopes. In this paper the hardware performances of the European Scanning System (ESS) are described. The ESS is a very fast automatic system developed for the mass scanning of the emulsions of the OPERA experiment, which requires microscopes with scanning speeds of � 20 cm 2 =h in an emulsion volume of 44mm thickness.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Momentum measurement by the angular method in the Emulsion Cloud Chamber

M. De Serio; M. Ieva; S. Simone; M. Giorgini; M. Sioli; G. Sirri; S. Buontempo; N. D'Ambrosio; G. De Lellis; G. De Rosa; S. Mangano; P. Migliozzi; C. Pistillo; L. Scotto Lavina; V. Tioukov; P. Righini; G. Rosa; E. Barbuto; C. Bozza; C. Sirignano

We present the first automated momentum measurement in an Emulsion Cloud Chamber, consisting of multiple sandwiches of lead plates and nuclear emulsion sheets. The measurement is based on the detection of the multiple Coulombscattering analysed by the so-called angular method. A 3 X0 chamber was exposed to 2, 3 and 4 GeV=c p � : A pion momentum resolution of 36% at 4 GeV=c; 35% at 3 GeV=c and 28% for 2 GeV=c was achieved.


Nature Communications | 2014

A moiré deflectometer for antimatter

S. Aghion; O. Ahlén; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; K. Berggren; G. Bonomi; P. Bräunig; J. Bremer; R. S. Brusa; L. Cabaret; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; H. Derking; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi; A. Gligorova

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics—the moiré deflectometer—for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.


Journal of Instrumentation | 2013

A new application of emulsions to measure the gravitational force on antihydrogen

C. Amsler; A. Ariga; T. Ariga; Saverio Braccini; C. Canali; A. Ereditato; J. Kawada; M. Kimura; I. Kreslo; C. Pistillo; P. Scampoli; J. Storey

We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equivalence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the annihilation vertex of antihydrogen atoms after their free fall while moving horizontally in a vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle detectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.


Journal of Instrumentation | 2007

Track reconstruction in the emulsion-lead target of the OPERA experiment using the ESS microscope

L. Arrabito; C. Bozza; S. Buontempo; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; R A Fini; G. Giacomelli; M. Giorgini; G. Grella; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; K. Manai; G. Mandrioli; A. Marotta; P. Migliozzi; P. Monacelli; U. Moser; M.T. Muciaccia; A. Pastore

The OPERA experiment, designed to conclusively prove the existence of ????? oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ??s in the CNGS ?? beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.


Journal of Instrumentation | 2007

Electron/pion separation with an emulsion cloud chamber by using a neural network.

L Arrabito; D. Autiero; C. Bozza; S. Buontempo; Y. Caffari; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; S Gagnebin; G. Giacomelli; M. Giorgini; G. Grella; M. Hauger; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; A. Longhin; G. Mandrioli; A. Marotta; J. Marteau; P. Migliozzi

We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/π separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV.


Journal of Instrumentation | 2007

Emulsion Cloud Chamber technique to measure the fragmentation of a high-energy carbon beam

G. De Lellis; S. Buontempo; F. Di Capua; A. Marotta; P. Migliozzi; Y Petukhov; C. Pistillo; A Russo; L. Scotto Lavina; P. Strolin; V. Tioukov; T Toshito; A. Ariga; N. Naganawa; Yoshiya Furusawa; N. Yasuda

Beams of Carbon nuclei are used or planned to be used in various centers for cancer treatment around the world because of their therapeutic advantages over proton beams. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighboring the tumor. In this respect, the identification of the fragmentation products is a key element. We present in this paper the charge measurement of about 3000 fragments produced by the interaction of 12C nuclei with an energy of 400 MeV/nucleon in a detector simulating the density of the human body. The nuclear emulsion technique is used, by means of the so-called Emulsion Cloud Chamber. In order to achieve the large dynamical range required for the charge measurement, the recently developed techniques of the emulsion controlled fading are used. The nuclear emulsions are inspected using fast automated microscopes recently developed. A charge assignment efficiency of more than 99% is achieved. The separation of Hydrogen, Helium, Lithium, Berillium, Boron and Carbon can be achieved at two standard deviations or considerably more, according to the track length available for the measurement.


Journal of Instrumentation | 2010

First results on proton radiography with nuclear emulsion detectors

Saverio Braccini; A. Ereditato; I. Kreslo; U. Moser; C. Pistillo; S Studer; P. Scampoli; A Coray; E Pedroni

We propose an innovative method for proton radiography based on nuclear emulsion film detectors, a technique in which images are obtained by measuring the position and the residual range of protons passing through the patients body. For this purpose, nuclear emulsion films interleaved with tissue equivalent absorbers can be used to reconstruct proton tracks with very high accuracy. This is performed through a fully automated scanning procedure employing optical microscopy, routinely used in neutrino physics experiments. Proton radiography can be used in proton therapy to obtain direct information on the average tissue density for treatment planning optimization and to perform imaging with very low dose to the patient. The first prototype of a nuclear emulsion based detector has been conceived, constructed and tested with a therapeutic proton beam. The first promising experimental results have been obtained by imaging simple phantoms.


Journal of Instrumentation | 2008

High-speed analysis of nuclear emulsion films with the use of dry objective lenses

I. Kreslo; M. Cozzi; A. Ereditato; M. Hess; J Knuesel; Imad Baptiste Laktineh; M. Messina; U. Moser; C. Pistillo; K. Pretzl; L Scotto Lavina; G. Sirri; H U Schütz; V. Tioukov

The extensive use of nuclear emulsions as precise tracking detectors in experimental physics has been made possible due to recent advances in the production of novel emulsion films and to the development of automatic scanning devices. The scanning speed of such systems has exceeded the level of 20 cm2 of emulsion surface per hour. High-speed automatic scanning systems, such as those developed by the OPERA Collaboration, are able to reconstruct particle tracks in nuclear emulsions with excellent accuracy. However, the high-magnification oil immersion objectives used in these systems assume deposition and removal of oil onto and from the emulsion films. This is a major technological obstacle in the automatization of the emulsion feeding to the microscope, as required for large scale use as in the case of the OPERA neutrino oscillation experiment. In order to overcome this problem, an innovative technique of nuclear emulsion films scanning with the use of dry objective lenses has been developed and successfully applied to the experiment.


NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas | 2013

AEgIS experiment commissioning at CERN

D. Krasnický; S. Aghion; C. Amsler; A. Ariga; T. Ariga; A. S. Belov; G. Bonomi; P. Bräunig; R. S. Brusa; J. Bremer; G. Burghart; L. Cabaret; M. Caccia; C. Canali; R. Caravita; F. Castelli; G. Cerchiari; S. Cialdi; D. Comparat; G. Consolati; L. Dassa; S. Di Domizio; L. Di Noto; M. Doser; A. Dudarev; A. Ereditato; R. Ferragut; A. Fontana; P. Genova; M. Giammarchi

The AEgIS Experiment is an international collaboration based at CERN whose aim is to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the gravitational field of the Earth. Cold antihydrogen will be produced with a pulsed charge exchange reaction in a cylindrical Penning trap where antiprotons will be cooled to 100mK. The cold antihydrogen will be produced in an excited Rydberg state and subsequently formed into a beam. The deflection of the antihydrogen beam will be measured by using Moire deflectometer gratings. After being approved in late 2008, AEgIS started taking data in a commissioning phase early 2012. This report presents an overview of the AEgIS experiment, describes its current status and shows the first measurements on antiproton catching and cooling in the 5 T Penning catching trap. We will also present details on the techniques needed for the 100mK antihydrogen production, such as pulsed positronium production and its excitation with lasers.

Collaboration


Dive into the C. Pistillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Ferragut

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

G. Bonomi

University of Brescia

View shared research outputs
Top Co-Authors

Avatar

M. Giammarchi

Istituto Nazionale di Fisica Nucleare

View shared research outputs
Top Co-Authors

Avatar

S. Aghion

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge