Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Preston Neff is active.

Publication


Featured researches published by C. Preston Neff.


Nucleic Acids Research | 2009

Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells

Jiehua Zhou; Piotr Swiderski; Haitang Li; Jane Zhang; C. Preston Neff; Ramesh Akkina; John J. Rossi

The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer–siRNA chimeras. The aptamers and aptamer–siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a ‘sticky’ sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs.


Molecular Therapy | 2011

Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice

Jiehua Zhou; C. Preston Neff; Xiaoxuan Liu; Jane Zhang; Haitang Li; David D. Smith; Piotr Swiderski; Tawfik A. Aboellail; Yuanyu Huang; Quan Du; Zicai Liang; Ling Peng; Ramesh Akkina; John J. Rossi

We evaluated the in vivo efficacy of structurally flexible, cationic PAMAM dendrimers as a small interfering RNA (siRNA) delivery system in a Rag2(-)/-γc-/- (RAG-hu) humanized mouse model for HIV-1 infection. HIV-infected humanized Rag2-/-γc-/- mice (RAG-hu) were injected intravenously (i.v.) with dendrimer-siRNA nanoparticles consisting of a cocktail of dicer substrate siRNAs (dsiRNAs) targeting both viral and cellular transcripts. We report in this study that the dendrimer-dsiRNA treatment suppressed HIV-1 infection by several orders of magnitude and protected against viral induced CD4(+) T-cell depletion. We also demonstrated that follow-up injections of the dendrimer-cocktailed dsiRNAs following viral rebound resulted in complete inhibition of HIV-1 titers. Biodistribution studies demonstrate that the dendrimer-dsiRNAs preferentially accumulate in peripheral blood mononuclear cells (PBMCs) and liver and do not exhibit any discernable toxicity. These data demonstrate for the first time efficacious combinatorial delivery of anti-host and -viral siRNAs for HIV-1 treatment in vivo. The dendrimer delivery approach therefore represents a promising method for systemic delivery of combinations of siRNAs for treatment of HIV-1 infection.


Molecular Therapy | 2013

Functional In Vivo Delivery of Multiplexed Anti-HIV-1 siRNAs via a Chemically Synthesized Aptamer With a Sticky Bridge

Jiehua Zhou; C. Preston Neff; Piotr Swiderski; Haitang Li; David D. Smith; Tawfik A. Aboellail; Leila Remling-Mulder; Ramesh Akkina; John J. Rossi

One of the most formidable impediments to clinical translation of RNA interference (RNAi) is safe and effective delivery of the siRNAs to the desired target tissue at therapeutic doses. We previously described in vivo cell type-specific delivery of anti-HIV small-interfering RNAs (siRNAs) through covalent conjugation to an anti-gp120 aptamer. In order to improve the utility of aptamers as siRNA delivery vehicles, we chemically synthesized the gp120 aptamer with a 3′ 7-carbon linker (7C3), which in turn is attached to a 16-nucleotide 2′ OMe/2′ Fl GC-rich bridge sequence. This bridge facilitates the noncovalent binding and interchange of various siRNAs with the same aptamer. We show here that this aptamer-bridge-construct complexed with three different Dicer substrate siRNAs (DsiRNAs) results in effective delivery of the cocktail of DsiRNAs in vivo, resulting in knockdown of target mRNAs and potent inhibition of HIV-1 replication. Following cessation of the aptamer-siRNA cocktail treatment, HIV levels rebounded facilitating a follow-up treatment with the aptamer cocktail of DsiRNAs. This follow-up injection resulted in complete suppression of HIV-1 viral loads that extended several weeks beyond the final injection. Collectively, these data demonstrate a facile, targeted approach for combinatorial delivery of antiviral and host DsiRNAs for HIV-1 therapy in vivo.


PLOS ONE | 2010

Oral Pre-Exposure Prophylaxis by Anti-Retrovirals Raltegravir and Maraviroc Protects against HIV-1 Vaginal Transmission in a Humanized Mouse Model

C. Preston Neff; Thomas Ndolo; Apurva Tandon; Yuichiro Habu; Ramesh Akkina

Sexual HIV-1 transmission by vaginal route is the most predominant mode of viral transmission, resulting in millions of new infections every year. In the absence of an effective vaccine, there is an urgent need to develop other alternative methods of pre-exposure prophylaxis (PrEP). Many novel drugs that are currently approved for clinical use also show great potential to prevent viral sexual transmission when administered systemically. A small animal model that permits rapid preclinical evaluation of potential candidates for their systemic PrEP efficacy will greatly enhance progress in this area of investigation. We have previously shown that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and displays CD4 T cell loss typical to that seen in the human. Thus far systemic PrEP studies have been primarily limited to RT inhibitors exemplified by tenofovir and emtricitabine. In these proof-of-concept studies we evaluated two new classes of clinically approved drugs with different modes of action namely, an integrase inhibitor raltegravir and a CCR5 inhibitor maraviroc as potential systemically administered chemo-prophylactics. Our results showed that oral administration of either of these drugs fully protects against vaginal HIV-1 challenge in the RAG-hu mouse model. Based on these results both these drugs show great promise for further development as orally administered PrEPs.


Virology | 2012

Topical gel formulation of broadly neutralizing anti-HIV-1 monoclonal antibody VRC01 confers protection against HIV-1 vaginal challenge in a humanized mouse model

Milena Veselinovic; C. Preston Neff; Leila R. Mulder; Ramesh Akkina

The new generation broadly neutralizing antibody VRC01 against HIV-1 shows great potential as a topically administered microbicide to prevent sexual transmission. We evaluated its efficacy in a RAG-hu humanized mouse model of vaginal HIV-1 transmission. Mice were challenged vaginally with R5 tropic HIV-1 BaL an hour after intravaginal application of the VRC01 (1 mg/ml concentration) gel. A combination of four first generation bNAbs, namely b12, 2F5, 4E10 and 2G12, was used as a positive efficacy control whereas a non-specific dengue MAb 4G2 was used as negative control. Our results showed that seven out of nine VRC01 antibody administered mice and all of the mice receiving the four bNAb antibody combination were protected against HIV-1 challenge. These findings demonstrate the efficacy of the new bNAb VRC01 as a topical microbicide to protect against HIV-1 vaginal transmission and highlight the use of the RAG-hu mouse model for testing HIV prevention strategies.


PLOS ONE | 2011

A Topical Microbicide Gel Formulation of CCR5 Antagonist Maraviroc Prevents HIV-1 Vaginal Transmission in Humanized RAG-hu Mice

C. Preston Neff; Theresa Kurisu; Thomas Ndolo; Kami Fox; Ramesh Akkina

For prevention of HIV infection many currently licensed anti-HIV drugs and new ones in the pipeline show potential as topically applied microbicides. While macaque models have been the gold standard for in vivo microbicide testing, they are expensive and sufficient numbers are not available. Therefore, a small animal model that facilitates rapid evaluation of potential candidates for their preliminary efficacy is urgently needed in the microbicide field. We previously demonstrated that RAG-hu humanized mouse model permits HIV-1 mucosal transmission via both vaginal and rectal routes and that oral pre-exposure chemo-prophylactic strategies could be tested in this system. Here in these proof-of-concept studies, we extended this system for topical microbicide testing using HIV-1 as the challenge virus. Maraviroc, a clinically approved CCR5 inhibitor drug for HIV treatment, was formulated as a microbicide gel at 5 mM concentration in 2.2% hydroxyl ethyl cellulose. Female RAG-hu mice were challenged vaginally with HIV-1 an hour after intravaginal application of the maraviroc gel. Our results showed that maraviroc gel treated mice were fully protected against vaginal HIV-1 challenge in contrast to placebo gel treated mice which all became infected. These findings highlight the utility of the humanized mouse models for microbicide testing and, together with the recent data from macaque studies, suggest that maraviroc is a promising candidate for future microbicide clinical trials in the field.


Journal of Immunology | 2013

In Vivo Blockade of the PD-1 Receptor Suppresses HIV-1 Viral Loads and Improves CD4+ T Cell Levels in Humanized Mice

Brent E. Palmer; C. Preston Neff; Jonathan LeCureux; Angelica Ehler; Michelle DSouza; Leila Remling-Mulder; Alan J. Korman; Andrew P. Fontenot; Ramesh Akkina

The programmed death-1 (PD-1) pathway limits the function of virus-specific T cells during chronic infection. We previously showed that blockade of the PD-1 pathway increases HIV-1–associated T cell function in vitro. However, the effect of PD-1 blockade on HIV-1 disease progression in vivo has not been examined. As in humans, HIV-1–infected humanized BALB/c-Rag2−/−γc−/− (Rag-hu) mice express elevated levels of PD-1 on T cells during chronic infection. To examine the effect of PD-1 blockade on disease progression, Rag-hu mice with chronic HIV-1 infection were treated with a blocking mAb directed against programmed cell death-1 ligand-1, the ligand for PD-1. Programmed cell death-1 ligand-1–treated Rag-hu mice exhibited a progressive decrease in the HIV-1 plasma viral load, with a 7-fold decrease by day 7, a 20-fold decrease by day 14, a 178-fold decrease by day 21, and a 269-fold decrease by day 28 postinitiation of treatment. By day 7, the percentage of CD4+ T cells was statistically higher in the treated compared with the untreated group, and this trend was sustained throughout the 28-d treatment period. Moreover, there was a strong inverse correlation between plasma viral load and the percentage of both CD4+ (r = −0.66; p < 0.0001) and CD8+ (r = −0.64; p < 0.0001) T cells in the treated mice but not the untreated mice. This study provides “proof of concept” that humanized mice can be used to examine the effects of immunotherapeutic interventions on HIV-1 infection. Furthermore, to our knowledge, these data demonstrate for the first time that blockade of the PD-1 pathway reduces HIV-1 viral loads.


Journal of Virology | 2008

The 3′ Untranslated Region of Sindbis Virus Represses Deadenylation of Viral Transcripts in Mosquito and Mammalian Cells

Nicole L. Garneau; Kevin J. Sokoloski; Mateusz Opyrchal; C. Preston Neff; Carol J. Wilusz; Jeffrey Wilusz

ABSTRACT The positive-sense transcripts of Sindbis virus (SINV) resemble cellular mRNAs in that they possess a 5′ cap and a 3′ poly(A) tail. It is likely, therefore, that SINV RNAs must successfully overcome the cytoplasmic mRNA decay machinery of the cell in order to establish an efficient, productive infection. In this study, we have taken advantage of a temperature-sensitive polymerase to shut off viral transcription, and we demonstrate that SINV RNAs are subject to decay during a viral infection in both C6/36 (Aedes albopictus) and baby hamster kidney cells. Interestingly, in contrast to most cellular mRNAs, the decay of SINV RNAs was not initiated by poly(A) tail shortening in either cell line except when most of the 3′ untranslated region (UTR) was deleted from the virus. This block in deadenylation of viral transcripts was recapitulated in vitro using C6/36 mosquito cell cytoplasmic extracts. Two distinct regions of the 319-base SINV 3′ UTR, the repeat sequence elements and a U-rich domain, were shown to be responsible for mediating the repression of deadenylation of viral mRNAs. Through competition studies performed in parallel with UV cross-linking and functional assays, mosquito cell factors—including a 38-kDa protein—were implicated in the repression of deadenylation mediated by the SINV 3′ UTR. This same 38-kDa protein was also implicated in mediating the repression of deadenylation by the 3′ UTR of another alphavirus, Venezuelan equine encephalitis virus. In summary, these data provide clear evidence that SINV transcripts do indeed interface with the cellular mRNA decay machinery during an infection and that the virus has evolved a way to avoid the major deadenylation-dependent pathway of mRNA decay.


PLOS ONE | 2011

Humanized Rag1-/- γc-/- mice support multilineage hematopoiesis and are susceptible to HIV-1 infection via systemic and vaginal routes.

Ramesh Akkina; Bradford K. Berges; Brent E. Palmer; Leila Remling; C. Preston Neff; Jes Kuruvilla; Elizabeth Connick; Joy M. Folkvord; Kathy Gagliardi; Afework Kassu; Sarah R. Akkina

Several new immunodeficient mouse models for human cell engraftment have recently been introduced that include the Rag2−/−γc−/−, NOD/SCID, NOD/SCIDγc−/− and NOD/SCIDβ2m−/− strains. Transplantation of these mice with CD34+ human hematopoietic stem cells leads to prolonged engraftment, multilineage hematopoiesis and the capacity to generate human immune responses against a variety of antigens. However, the various mouse strains used and different methods of engrafting human cells are beginning to illustrate strain specific variations in engraftment levels, duration and longevity of mouse life span. In these proof-of-concept studies we evaluated the Balb/c-Rag1−/−γ−/− strain for engraftment by human fetal liver derived CD34+ hematopoietic cells using the same protocol found to be effective for Balb/c-Rag2−/−γc−/− mice. We demonstrate that these mice can be efficiently engrafted and show multilineage human hematopoiesis with human cells populating different lymphoid organs. Generation of human cells continues beyond a year and production of human immunoglobulins is noted. Infection with HIV-1 leads to chronic viremia with a resultant CD4 T cell loss. To mimic the predominant sexual viral transmission, we challenged humanized Rag1−/−γc−/− mice with HIV-1 via vaginal route which also resulted in chronic viremia and helper T cell loss. Thus these mice can be further exploited for studying human pathogens that infect the human hematopoietic system in an in vivo setting.


American Journal of Respiratory and Critical Care Medicine | 2015

Lymphocytic Alveolitis Is Associated with the Accumulation of Functionally Impaired HIV-Specific T Cells in the Lung of Antiretroviral Therapy–Naive Subjects

C. Preston Neff; Jennifer L. Chain; Samantha MaWhinney; Allison K. Martin; Derek J. Linderman; Sonia C. Flores; Thomas B. Campbell; Brent E. Palmer; Andrew P. Fontenot

RATIONALE Lymphocytic alveolitis in HIV-1-infected individuals is associated with multiple pulmonary complications and a poor prognosis. Although lymphocytic alveolitis has been associated with viremia and an increased number of CD8(+) T cells in the lung, its exact cause is unknown. OBJECTIVES To determine if HIV-1-specific T cells are associated with lymphocytic alveolitis in HIV-1-infected individuals. METHODS Using blood and bronchoalveolar lavage (BAL) cells from normal control subjects and untreated HIV-1-infected individuals, we examined the frequency and functional capacity of HIV-1-specific T cells. MEASUREMENTS AND MAIN RESULTS We found that HIV-1-specific T cells were significantly elevated in the BAL compared with blood of HIV-1-infected individuals and strongly correlated with T-cell alveolitis. Expression of Ki67, a marker of in vivo proliferation, was significantly reduced on HIV-1-specific T cells in BAL compared with blood, suggesting a diminished proliferative capacity. In addition, HIV-1-specific CD4(+) and CD8(+) T cells in BAL had higher expression of programmed death 1 (PD-1) and lower cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression than those in the blood. A strong correlation between PD-1, but not CTLA-4, and HIV-1-specific T-cell proliferation was seen, and blockade of the PD-1/PD-L1 pathway augmented HIV-1-specific T-cell proliferation, suggesting that the PD-1 pathway was the main cause of reduced proliferation in the lung. CONCLUSIONS These findings suggest that alveolitis associated with HIV-1 infection is caused by the recruitment of HIV-1-specific CD4(+) and CD8(+) T cells to the lung. These antigen-specific T cells display an impaired proliferative capacity that is caused by increased expression of PD-1.

Collaboration


Dive into the C. Preston Neff's collaboration.

Top Co-Authors

Avatar

Ramesh Akkina

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Brent E. Palmer

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Haitang Li

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jiehua Zhou

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

John J. Rossi

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Piotr Swiderski

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

David D. Smith

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jane Zhang

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Leila Remling

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge