Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. R. Bower is active.

Publication


Featured researches published by C. R. Bower.


The Astrophysical Journal | 1997

Measurements of the cosmic ray positron fraction from 1-GeV to 50-GeV

S. W. Barwick; S. Coutu; James H. Knapp; E. Schneider; E. B. Torbet; D. Müller; C. R. Bower; G. Tarle; J. Musser; G. A. de Nolfo; Scott Lowry Nutter; Christopher James Chaput; Simon P. Swordy; D. M. Lowder; J. J. Beatty; S. McKee; A. Bhattacharyya; Andrew David Tomasch

Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Fort Sumner, New Mexico, in 1994 and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight, from Lynn Lake, Manitoba, in 1995, permitted measurements over a larger energy interval, from 1 to 50 GeV. We present results on the positron fraction based on data from the Lynn Lake flight and compare these with the previously published results from the Fort Sumner flight. The results confirm that the positron fraction does not increase with energy above ≈ 10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960s. This effect could possibly be a consequence of charge dependence in the level of solar modulation.


The Astrophysical Journal | 1997

Measurements of the Cosmic-Ray Positron Fraction from 1 to 50 G[CLC]e[/CLC]V

S. W. Barwick; J. J. Beatty; A. Bhattacharyya; C. R. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; James H. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; G. Tarle; Andrew David Tomasch; E. B. Torbet

Two measurements of the cosmic-ray positron fraction as a function of energy have been made using the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument. The first flight took place from Fort Sumner, New Mexico, in 1994 and yielded results above the geomagnetic cutoff energy of 4.5 GeV. The second flight, from Lynn Lake, Manitoba, in 1995, permitted measurements over a larger energy interval, from 1 to 50 GeV. We present results on the positron fraction based on data from the Lynn Lake flight and compare these with the previously published results from the Fort Sumner flight. The results confirm that the positron fraction does not increase with energy above ≈ 10 GeV, although a small excess above purely secondary production cannot be ruled out. At low energies the positron fraction is slightly larger than that reported from measurements made in the 1960s. This effect could possibly be a consequence of charge dependence in the level of solar modulation.


Journal of Geophysical Research | 1998

Cosmic ray reentrant electron albedo: High-Energy Antimatter Telescope balloon measurements from Fort Sumner, New Mexico

S. W. Barwick; J. J. Beatty; C. R. Bower; Christopher James Chaput; S. Coutu; G. A. de Nolfo; Michael A. DuVernois; David J. Ficenec; James H. Knapp; D. M. Lowder; S. McKee; D. Müller; J. Musser; Scott Lowry Nutter; E. Schneider; Simon P. Swordy; G. Tarle; Andrew David Tomasch; E. B. Torbet

The High-Energy Antimatter Telescope (HEAT) balloon cosmic ray detector flew from Fort Sumner, New Mexico on May 3–5, 1994. The instrument measured electron and positron abundances and spectra from ∼1 to 100 GeV at a vertical geomagnetic cutoff rigidity that varied between 4.0 and 4.5 GV. The intensities of electrons and positrons have been measured as a function of atmospheric depth between 3.8 and 7.4 g cm−2 of overburden. At magnetic rigidities below cutoff, the intensity of downward moving e± consists of secondary (spallogenic) particles and the reentrant (or return) albedo. We determine the contribution of the reentrant electron albedo and compare it with earlier measurements and limits at similar geomagnetic cutoff levels. In the range of 1.0–2.4 GeV, the reentrant albedo component amounts to 40% of the total electron intensity observed.


Astronomical Telescopes and Instrumentation | 2003

SNAP focal plane

Michael L. Lampton; Christopher J. Bebek; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks; S. Holland

The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation -- visible and near-infrared imagers, spectrograph, and star guiders -- share one common focal plane.The proposed SuperNova/Acceleration Probe (SNAP) mission will have a two-meter class telescope delivering diffraction-limited images to an instrumented 0.7 square-degree field sensitive in the visible and near-infrared wavelength regime. We describe the requirements for the instrument suite and the evolution of the focal plane design to the present concept in which all the instrumentation -- visible and near-infrared imagers, spectrograph, and star guiders -- share one common focal plane.


UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts | 2004

SNAP telescope: an update

Michael L. Lampton; Michael Sholl; Michael H. Krim; R. Besuner; C. Akerlof; G. Aldering; Rahman Amanullah; Pierre Astier; Charles Baltay; E. Barrelet; S. Basa; Christopher J. Bebek; J. Bercovitz; Lars Bergström; Gary Berstein; M. Bester; Ralph C. Bohlin; Alain Bonissent; C. R. Bower; M. Campbell; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; William Emmett; M. Eriksson; D. Fouchez

We present the baseline telescope design for the telescope for the SuperNova/Acceleration Probe (SNAP) space mission. SNAP’s purpose is to determine expansion history of the Universe by measuring the redshifts, magnitudes, and spectral classifications of thousands of supernovae with unprecedented accuracy. Discovering and measuring these supernovae demand both a wide optical field and a high sensitivity throughout the visible and near IR wavebands. We have adopted the annular-field three-mirror anastigmat (TMA) telescope configuration, whose classical aberrations (including chromatic) are zero. We show a preliminary optmechanical design that includes important features for stray light control and on-orbit adjustment and alignment of the optics. We briefly discuss stray light and tolerance issues, and present a preliminary wavefront error budget for the SNAP Telescope. We conclude by describing some of the design tasks being carried out during the current SNAP research and development phase.


Astronomical Telescopes and Instrumentation | 2002

Wide-Field Surveys from the SNAP Mission

Alex G. Kim; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks; S. Holland

The Supernova / Acceleration Probe (SNAP) is a proposed space-borne observatory that will survey the sky with a wide-field optical/near-infrared (NIR) imager. The images produced by SNAP will have an unprecedented combination of depth, solid-angle, angular resolution, and temporal sampling. For 16 months each, two 7.5 square-degree fields will be observed every four days to a magnitude depth of AB=27.7 in each of the SNAP filters, spanning 3500-17000Å. Co-adding images over all epochs will give AB=30.3 per filter. In addition, a 300 square-degree field will be surveyed to AB=28 per filter, with no repeated temporal sampling. Although the survey strategy is tailored for supernova and weak gravitational lensing observations, the resulting data will support a broad range of auxiliary science programs.


Astronomical Telescopes and Instrumentation | 2003

SNAP NIR detectors

Gregory Tarle; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; G. M. Bernstein; M. Bester; Alain Bonissent; C. R. Bower; Mark L. Brown; W. Carithers; Eugene D. Commins; C. Day; Susana Elizabeth Deustua; R. DiGennaro; A. Ealet; Richard S. Ellis; M. Eriksson; Andrew S. Fruchter; Jean-Francois Genat; G. Goldhaber; Ariel Goobar; Donald E. Groom; Stewart E. Harris; Peter R. Harvey; Henry D. Heetderks

The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.


Proceedings of SPIE | 2010

Pass-band filter performance for space-flight dark energy missions

Jerry Edelstein; Stuart Lee Mufson; Nick J. Mostek; Brian J. Baptista; Bruce E. Woodgate; Alex G. Kim; C. R. Bower; Ray Boucarut; Manuel A. Quijada

The nature of Dark Energy can by constrained by the precise determination of super-novae distance moduli in ultraviolet to near IR pass-bands. Space-based observations are required for these moduli to be measured with the scientifically required photometric accuracies. Consequently, robust pass-band filters operable at cryogenic temperatures (120-140K) are needed that have challenging performance attributes including high in-band transmission, low ripple, good out-ofband rejection, and moderate band-edge slope. We describe the requirements and performance of dielectric multi-layer filters with spectral profiles that are suitable for both achieving the science and for accurate calibration using plausible on-orbit measurement systems.


Archive | 2001

Positron Measurements with the Heat-Pbar Instrument

S. Coutu; A. S. Beach; J. J. Beatty; A. Bhattacharyya; C. R. Bower; Michael A. DuVernois; A. W. Labrador; Shawn Patrick McKee; Stephen Anthony Minnick; D. Müller; J. Musser; Scott Lowry Nutter; M. Schubnell; Simon P. Swordy; Gregory Tarle; Andrew David Tomasch


Astroparticle Physics | 2004

Weak lensing from space I: instrumentation and survey strategy

Jason Rhodes; Alexandre Refregier; Richard Massey; J. Albert; David Bacon; G. M. Bernstein; Richard S. Ellis; Bhuvnesh Jain; Alex G. Kim; M. Lampton; Timothy A. McKay; C. Akerlof; G. Aldering; R. Amanullah; Pierre Astier; Charles Baltay; E. Barrelet; Christopher J. Bebek; Lars Bergström; J. Bercovitz; M. Bester; B. Bigelow; Ralph C. Bohlin; Alain Bonissent; C. R. Bower; Mark L. Brown; M. Campbell; W. Carithers; Eugene D. Commins; C. Day

Collaboration


Dive into the C. R. Bower's collaboration.

Top Co-Authors

Avatar

J. Musser

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory Tarle

University of California

View shared research outputs
Top Co-Authors

Avatar

Scott Lowry Nutter

Eastern New Mexico University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Coutu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

S. W. Barwick

University of California

View shared research outputs
Top Co-Authors

Avatar

D. M. Lowder

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Schneider

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge