C Ramsey
University of Tennessee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C Ramsey.
Medical Physics | 2006
P Keall; Gig S. Mageras; James M. Balter; Richard S. Emery; Kenneth Forster; Steve B. Jiang; Jeffrey M. Kapatoes; Daniel A. Low; Martin J. Murphy; B. Murray; C Ramsey; Marcel van Herk; S. Vedam; John Wong; Ellen Yorke
This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than 5mm, a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.
Medical Physics | 2009
Gary A. Ezzell; N Dogan; Thomas LoSasso; James Mechalakos; D Mihailidis; A Molineu; Jatinder R. Palta; C Ramsey; Bill J. Salter; Jie Shi; P. Xia; Ning J. Yue; Ying Xiao
AAPM Task Group 119 has produced quantitative confidence limits as baseline expectation values for IMRT commissioning. A set of test cases was developed to assess the overall accuracy of planning and delivery of IMRT treatments. Each test uses contours of targets and avoidance structures drawn within rectangular phantoms. These tests were planned, delivered, measured, and analyzed by nine facilities using a variety of IMRT planning and delivery systems. Each facility had passed the Radiological Physics Center credentialing tests for IMRT. The agreement between the planned and measured doses was determined using ion chamber dosimetry in high and low dose regions, film dosimetry on coronal planes in the phantom with all fields delivered, and planar dosimetry for each field measured perpendicular to the central axis. The planar dose distributions were assessed using gamma criteria of 3%/3 mm. The mean values and standard deviations were used to develop confidence limits for the test results using the concept confidence limit = /mean/ + 1.96sigma. Other facilities can use the test protocol and results as a basis for comparison to this group. Locally derived confidence limits that substantially exceed these baseline values may indicate the need for improved IMRT commissioning.
Medical Physics | 2010
Katja M. Langen; N Papanikolaou; John Balog; Richard J. Crilly; D Followill; S. Murty Goddu; Walter Grant; Gustavo H. Olivera; C Ramsey; Chengyu Shi
Helical tomotherapy is a relatively new modality with integrated treatment planning and delivery hardware for radiation therapy treatments. In view of the uniqueness of the hardware design of the helical tomotherapy unit and its implications in routine quality assurance, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 148 to review this modality and make recommendations for quality assurance related methodologies. The specific objectives of this Task Group are: (a) To discuss quality assurance techniques, frequencies, and tolerances and (b) discuss dosimetric verification techniques applicable to this unit. This report summarizes the findings of the Task Group and aims to provide the practicing clinical medical physicist with the insight into the technology that is necessary to establish an independent and comprehensive quality assurance program for a helical tomotherapy unit. The emphasis of the report is to describe the rationale for the proposed QA program and to provide example tests that can be performed, drawing from the collective experience of the task group members and the published literature. It is expected that as technology continues to evolve, so will the test procedures that may be used in the future to perform comprehensive quality assurance for helical tomotherapy units.
Medical Dosimetry | 1999
C Ramsey; D. Scaperoth; Don Arwood; Adrian L. Oliver
One major limitation of three-dimensional conformal radiation therapy that has not been adequately addressed is respiration-induced organ motion. During respiration, tumors in the abdomen can typically move from 1 to 3 centimeters. Because the size and shape of external radiation treatment fields do not change during treatment, the field size of the x-ray beam must be enlarged to encompass the tumor through the entire respiration cycle. Several manufacturers are developing respiratory gating systems. These systems allow the selective delivery of absorbed doses to moving target volumes in the abdomen during time intervals when the target volume is within the intended location. Before respiratory gated radiotherapy can be implemented clinically, the efficacy of the procedure must be justified. The magnitude of dosimetric and geometric uncertainties associated with respiratory motion must be identified to determine if gating can provide an advantage over conventional treatment techniques. In addition, clinical situations and specific types of cancer that could benefit from respiratory gating must also be identified.
Medical Physics | 1999
C Ramsey; Ivan L. Cordrey; Adrian L. Oliver
Respiratory gating has only recently been applied to conventional external beam radiotherapy. In order for respiratory gating to be used clinically, an evaluation of the dosimetric effects of small units of delivered dose must be performed. The purpose of this study is to systematically evaluate the effect of various gating sequences on x-ray central axis output, ionization ratios (nominal accelerating potential), beam flatness, and beam symmetry. Measurements were taken for 6 and 18 MV photons on a linear accelerator that generates the gate by using a gridded electron gun to stop the electron flow to the wave-guide. The beam output, energy, flatness, and symmetry did not vary by more than 0.8 percent in most of the gating sequences. The maximum output deviations (0.8 percent), flatness deviations (1.9 percent), and symmetry deviations (0.8 percent) occurred when a low number of monitor units (<5 MU) were delivered in the gating window. Although these deviations are not clinically significant, each linear accelerator should be evaluated carefully before clinical implementation.
Medical Physics | 2007
C Ramsey; R Seibert; Benjamin Robison; Martha Mitchell
Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantoms surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73 +/- 0.10 Gy (or 86.6 +/- 5.1% of the prescribed dose). The measured superficial dose decreases to 1.23 +/- 0.10 Gy (61.5 +/- 5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9 +/- 3.2%. The radiographic film dose for the 0 mm test case was 1.73 +/- 0.07 Gy, as compared to the calculated dose of 1.78 +/- 0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these clinical cases. For cases where the target volume is located 1 to 5 mm below the surface, the tumor volume coverage can be achieved with surface doses ranging from 56% to 93% of the prescribed dose.
Medical Physics | 2001
C Ramsey; Kelly M. Spencer; Rabi Alhakeem; Adrian L. Oliver
Conformal dynamic arc (CD-ARC) and intensity modulated arc treatments (IMAT) are both treatment modalities where the multileaf collimator (MLC) can change leaf position dynamically during gantry rotation. These treatment techniques can be used to generate complex isodose distributions, similar to those used in fix-gantry intensity modulation. However, a beam-hold delay cannot be used during CD-ARC or IMAT treatments to reduce spatial error. Consequently, a certain amount of leaf position error will have to be accepted in order to make the treatment deliverable. Measurements of leaf position accuracy were taken with leaf velocities ranging from 0.3 to 3.0 cm/s. The average and maximum leaf position errors were measured, and a least-squares linear regression analysis was performed on the measured data to determine the MLC velocity error coefficient. The average position errors range from 0.03 to 0.21 cm, with the largest deviations occurring at the maximum achievable leaf velocity (3.0 cm/s). The measured MLC velocity error coefficient was 0.0674 s for a collimator rotation of 0 degrees and 0.0681 s for a collimator rotation of 90 degrees. The distribution in leaf position error between the 0 degrees and 90 degrees collimator rotations was within statistical uncertainty. A simple formula was developed based on these results for estimating the velocity-dependent dosimetric error. Using this technique, a dosimetric error index for plan evaluation can be calculated from the treatment time and the dynamic MLC leaf controller file.
Journal of Applied Clinical Medical Physics | 2006
C Ramsey; R Seibert; S. Mahan; D Desai; D Chase
Helical tomotherapy is a rotational delivery technique that uses intensity‐modulated fan beams to deliver highly conformal intensity‐modulated radiation therapy (IMRT). The beam‐on time needed to deliver a given prescribed dose can be up to 15 times longer than that needed using conventional treatment delivery. As such, there is concern that this delivery technique has the potential to increase the whole body dose due to increased leakage. The purpose of this work is to directly measure out‐of‐field doses for a clinical tomotherapy system. Peripheral doses were measured in‐phantom using static fields and rotational intensity‐modulated delivery. In‐air scatter and leakage doses were also measured at multiple locations around the treatment room. At 20 cm, the tomotherapy peripheral dose dropped to 0.4% of the prescribed dose. Leakage accounted for 94% of the in‐air dose at distances greater than 60 cm from the machines isocenter. The largest measured dose equivalent rate was 1×10−10 Sv/s in the plane of gantry rotation due to head leakage and primary beam transmission through the systems beam stopper. The dose equivalent rate dropped to 1×10−10 Sv/s at the end of the treatment couch. Even though helical tomotherapy treatment delivery requires beam‐on times that are 5 to 15 times longer than those used by conventional accelerators, the delivery system was designed to maximize shielding for radiation leakage. As such, the peripheral doses are equal to or less than the published peripheral doses for IMRT delivery on other linear accelerators. In addition, the shielding requirements are also similar to conventional linear accelerators. PACS number: 87.53.Dq
Medical Physics | 1999
C Ramsey; Ivan L. Cordrey; Kelly M. Spencer; Adrian L. Oliver
The Task Group 23 (TG-23) radiation treatment planning dosimetry verification package was used to evaluate the dosimetric accuracy of two commercially available treatment planning systems. The TG-23 test package contains experimentally measured beam data for two x-ray beams (4 and 18 MV) that can be used as input for 3D-RTP (three-dimensional radiation treatment planning) systems. Once the beam data is entered and modeled, a series of test cases are performed that isolate different aspects of the dose computational process. The computed values from the 3D-RTP system are compared against the measured dosimetry data, included in the package, for a set of comparison points within each test case. Both of the treatment planning systems that were studied provided excellent agreement between computed and measured doses. The cumulative 4 and 18 MV TG-23 test results for the convolution/superposition based planning system indicates that 96% of the dosimetric test points are within +/-2%, and 98% are within +/-3% of the tabulated TG-23 values. The dosimetric TG-23 test results for the pencil beam kernel based planning system are similar, with 96% of the test points falling within +/-2%, and 99% falling within +/-3% of the TG-23 measurements.
Medical Physics | 1998
C Ramsey; Adrian L. Oliver
Currently, patients with brain neoplasms must undergo both computed tomography (CT) and magnetic resonance (MR) imaging to take advantage of CTs density information and MRs soft tissue imaging capabilities. A method has been developed that allows virtual simulation, digitally reconstructed radiographs (DRRs), and 3-D treatment planning of patients with brain neoplasms to be generated using only one T1-weighted MR data set. DRRs of an anthropomorphic RANDO head phantom were generated using MR and CT imaging. The MR based DRRs provided structural information equivalent to CT based DRRs. The spatial linearity of CT and MR image sets was evaluated by measuring the percent distortion and spatial error. There was no statistical difference in spatial linearity or accuracy between the CT and MR image sets. MR and CT based treatment planning were compared using a variety of different treatment accessories, field sizes, photon energies, and gantry positions. Doses at various points throughout the head phantom were used as comparison points between CT based heterogeneous, CT based homogenous, and MR based homogenous treatment planning of the head phantom. Lithium fluoride thermoluminescent dosimeters were used to verify the dosimetric accuracy of MR based treatment planning by taking measurements at these points. For treatment plans with fields that pass through large air cavities, such as the maxillary sinus, homogenous treatment planning produces unacceptable dosimetric error (2%-4%). For treatment plans with fields that pass through the skull, MR homogenous treatment planning can be used with a dosimetric accuracy of +/- 2%.