Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sanford L. Meeks is active.

Publication


Featured researches published by Sanford L. Meeks.


Medical Physics | 2010

Stereotactic body radiation therapy: The report of AAPM Task Group 101

Stanley H. Benedict; Kamil M. Yenice; D Followill; James M. Galvin; William H. Hinson; Brian D. Kavanagh; P Keall; Michael Lovelock; Sanford L. Meeks; Lech Papiez; Thomas G. Purdie; R Sadagopan; Michael C. Schell; Bill J. Salter; David Schlesinger; Almon S. Shiu; Timothy D. Solberg; Danny Y. Song; Volker W. Stieber; Robert D. Timmerman; Wolfgang A. Tomé; Dirk Verellen; Lu Wang; Fang-Fang Yin

Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.


International Journal of Radiation Oncology Biology Physics | 2008

Observations on Real-Time Prostate Gland Motion Using Electromagnetic Tracking

Katja M. Langen; Twyla R. Willoughby; Sanford L. Meeks; Anand P. Santhanam; Alexis Cunningham; Lisa Levine; Patrick A. Kupelian

PURPOSE To quantify and describe the real-time movement of the prostate gland in a large data set of patients treated with radiotherapy. METHODS AND MATERIALS The Calypso four-dimensional localization system was used for target localization in 17 patients, with electromagnetic markers implanted in the prostate of each patient. We analyzed a total of 550 continuous tracking sessions. The fraction of time that the prostate was displaced by >3, >5, >7, and >10 mm was calculated for each session and patient. The frequencies of displacements after initial patient positioning were analyzed over time. RESULTS Averaged over all patients, the prostate was displaced >3 and >5 mm for 13.6% and 3.3% of the total treatment time, respectively. For individual patients, the corresponding maximal values were 36.2% and 10.9%. For individual fractions, the corresponding maximal values were 98.7% and 98.6%. Displacements >3 mm were observed at 5 min after initial alignment in about one-eighth of the observations, and increased to one-quarter by 10 min. For individual patients, the maximal value of the displacements >3 mm at 5 and 10 min after initial positioning was 43% and 75%, respectively. CONCLUSION On average, the prostate was displaced by >3 mm and >5 mm approximately 14% and 3% of the time, respectively. For individual patients, these values were up to three times greater. After the initial positioning, the likelihood of displacement of the prostate gland increased with elapsed time. This highlights the importance of initiating treatment shortly after initially positioning the patient.


Medical Physics | 2005

Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit

Sanford L. Meeks; Joseph F. Harmon; Katja M. Langen; Twyla R. Willoughby; Thomas H. Wagner; Patrick A. Kupelian

Helical tomotherapy is an innovative means of delivering IGRT and IMRT using a device that combines features of a linear accelerator and a helical computed tomography (CT) scanner. The HI-ART II can generate CT images from the same megavoltage x-ray beam it uses for treatment. These megavoltage CT (MVCT) images offer verification of the patient position prior to and potentially during radiation therapy. Since the unit uses the actual treatment beam as the x-ray source for image acquisition, no surrogate telemetry systems are required to register image space to treatment space. The disadvantage to using the treatment beam for imaging, however, is that the physics of radiation interactions in the megavoltage energy range may force compromises between the dose delivered and the image quality in comparison to diagnostic CT scanners. The performance of the system is therefore characterized in terms of objective measures of noise, uniformity, contrast, and spatial resolution as a function of the dose delivered by the MVCT beam. The uniformity and spatial resolutions of MVCT images generated by the HI-ART II are comparable to that of diagnostic CT images. Furthermore, the MVCT scan contrast is linear with respect to the electron density of material imaged. MVCT images do not have the same performance characteristics as state-of-the art diagnostic CT scanners when one objectively examines noise and low-contrast resolution. These inferior results may be explained, at least partially, by the low doses delivered by our unit; the dose is 1.1 cGy in a 20 cm diameter cylindrical phantom. In spite of the poorer low-contrast resolution, these relatively low-dose MVCT scans provide sufficient contrast to delineate many soft-tissue structures. Hence, these images are useful not only for verifying the patients position at the time of therapy, but they are also sufficient for delineating many anatomic structures. In conjunction with the ability to recalculate radiotherapy doses on these images, this enables dose guidance as well as image guidance of radiotherapy treatments.


Physics in Medicine and Biology | 2005

The use of megavoltage CT (MVCT) images for dose recomputations.

Katja M. Langen; Sanford L. Meeks; D. Poole; Thomas H. Wagner; Twyla R. Willoughby; Patrick A. Kupelian; Kenneth J. Ruchala; Jason Haimerl; Gustavo H. Olivera

Megavoltage CT (MVCT) images of patients are acquired daily on a helical tomotherapy unit (TomoTherapy, Inc., Madison, WI). While these images are used primarily for patient alignment, they can also be used to recalculate the treatment plan for the patient anatomy of the day. The use of MVCT images for dose computations requires a reliable CT number to electron density calibration curve. In this work, we tested the stability of the MVCT numbers by determining the variation of this calibration with spatial arrangement of the phantom, time and MVCT acquisition parameters. The two calibration curves that represent the largest variations were applied to six clinical MVCT images for recalculations to test for dosimetric uncertainties. Among the six cases tested, the largest difference in any of the dosimetric endpoints was 3.1% but more typically the dosimetric endpoints varied by less than 2%. Using an average CT to electron density calibration and a thorax phantom, a series of end-to-end tests were run. Using a rigid phantom, recalculated dose volume histograms (DVHs) were compared with plan DVHs. Using a deformed phantom, recalculated point dose variations were compared with measurements. The MVCT field of view is limited and the image space outside this field of view can be filled in with information from the planning kVCT. This merging technique was tested for a rigid phantom. Finally, the influence of the MVCT slice thickness on the dose recalculation was investigated. The dosimetric differences observed in all phantom tests were within the range of dosimetric uncertainties observed due to variations in the calibration curve. The use of MVCT images allows the assessment of daily dose distributions with an accuracy that is similar to that of the initial kVCT dose calculation.


International Journal of Radiation Oncology Biology Physics | 2008

Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration.

Choonik Lee; Katja M. Langen; Weiguo Lu; Jason Haimerl; Eric Schnarr; Kenneth J. Ruchala; Gustavo H. Olivera; Sanford L. Meeks; Patrick A. Kupelian; Thomas D. Shellenberger; Rafael R. Mañon

PURPOSE To analyze changes in parotid gland dose resulting from anatomic changes throughout a course of radiotherapy in a cohort of head-and-neck cancer patients. METHODS AND MATERIALS The study population consisted of 10 head-and-neck cancer patients treated definitively with intensity-modulated radiotherapy on a helical tomotherapy unit. A total of 330 daily megavoltage computed tomography images were retrospectively processed through a deformable image registration algorithm to be registered to the planning kilovoltage computed tomography images. The process resulted in deformed parotid contours and voxel mappings for both daily and accumulated dose-volume histogram calculations. The daily and cumulative dose deviations from the original treatment plan were analyzed. Correlations between dosimetric variations and anatomic changes were investigated. RESULTS The daily parotid mean dose of the 10 patients differed from the plan dose by an average of 15%. At the end of the treatment, 3 of the 10 patients were estimated to have received a greater than 10% higher mean parotid dose than in the original plan (range, 13-42%), whereas the remaining 7 patients received doses that differed by less than 10% (range, -6-8%). The dose difference was correlated with a migration of the parotids toward the high-dose region. CONCLUSIONS The use of deformable image registration techniques and daily megavoltage computed tomography imaging makes it possible to calculate daily and accumulated dose-volume histograms. Significant dose variations were observed as result of interfractional anatomic changes. These techniques enable the implementation of dose-adaptive radiotherapy.


Medical Physics | 2006

Characterization and use of EBT radiochromic film for IMRT dose verification

O Zeidan; Stacy Ann L. Stephenson; Sanford L. Meeks; Thomas H. Wagner; Twyla R. Willoughby; Patrick A. Kupelian; Katja M. Langen

We present an evaluation of a new and improved radiochromic film, type EBT, for its implementation to IMRT dose verification. Using a characterized flat bed color CCD scanner, the films dose sensitivity, uniformity, and speed of development post exposure were shown to be superior to previous types of radiochromic films. The films dose response was found to be very similar to ion chamber scans in water through comparisons of depth dose and lateral dose profiles. The effect of EBT film polarization with delivered dose and film scan orientation was shown to have a significant effect on the scanners OD readout. In addition, the films large size, flexibility, and the ability to submerge it in water for relatively short periods of time allowed for its use in both water and solid water phantoms to verify TomoTherapy IMRT dose distributions in flat and curved dose planes. Dose verification in 2D was performed on ten IMRT plans (five head and neck and five prostate) by comparing measured EBT dose distributions to TomoTherapy treatment planning system calculated dose. The quality of agreement was quantified by the gamma index for four sets of dose difference and distance to agreement criteria. Based on this study, we show that EBT film has several favorable features that allow for its use in routine IMRT patient-specific QA.


Physics in Medicine and Biology | 2001

Calibration of three-dimensional ultrasound images for image-guided radiation therapy

Lionel G. Bouchet; Sanford L. Meeks; Gordon Goodchild; Francis J. Bova; John M. Buatti; William A. Friedman

A new technique of patient positioning for radiotherapy/radiosurgery of extracranial tumours using three-dimensional (3D) ultrasound images has been developed. The ultrasound probe position is tracked within the treatment room via infrared light emitting diodes (IRLEDs) attached to the probe. In order to retrieve the corresponding room position of the ultrasound image, we developed an initial ultrasound probe calibration technique for both 2D and 3D ultrasound systems. This technique is based on knowledge of points in both room and image coordinates. We first tested the performance of three algorithms in retrieving geometrical transformations using synthetic data with different noise levels. Closed form solution algorithms (singular value decomposition and Horns quaternion algorithms) were shown to outperform the Hooke and Jeeves iterative algorithm in both speed and accuracy. Furthermore, these simulations show that for a random noise level of 2.5, 5, 7.5 and 10 mm, the number of points required for a transformation accuracy better than 1 mm is 25, 100, 200 and 500 points respectively. Finally, we verified the tracking accuracy of this system using a specially designed ultrasound phantom. Since ultrasound images have a high noise level, we designed an ultrasound phantom that provides a large number of points for the calibration. This tissue equivalent phantom is made of nylon wires, and its room position is optically tracked using IRLEDs. By obtaining multiple images through the nylon wires, the calibration technique uses an average of 300 points for 3D ultrasound volumes and 200 for 2D ultrasound images, and its stability is very good for both rotation (standard deviation: 0.4 degrees) and translation (standard deviation: 0.3 mm) transformations. After this initial calibration procedure, the position of any voxel in the ultrasound image volume can be determined in world space, thereby allowing real-time image guidance of therapeutic procedures. Finally, the overall tracking accuracy of our 3D ultrasound image-guided positioning system was measured to be on average 0.2 mm, 0.9 mm and 0.6 mm for the AP, lateral and axial directions respectively.


Radiotherapy and Oncology | 2008

Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration

Choonik Lee; Katja M. Langen; Weiguo Lu; Jason Haimerl; Eric Schnarr; Kenneth J. Ruchala; Gustavo H. Olivera; Sanford L. Meeks; Patrick A. Kupelian; Thomas D. Shellenberger; Rafael R. Mañon

BACKGROUND AND PURPOSE To assess and evaluate geometrical changes in parotid glands using deformable image registration and megavoltage CT (MVCT) images. METHODS A deformable registration algorithm was applied to 330 daily MVCT images (10 patients) to create deformed parotid contours. The accuracy and robustness of the algorithm was evaluated through visual review, comparison with manual contours, and precision analysis. Temporal changes in the parotid gland geometry were observed. RESULTS The deformed parotid contours were qualitatively judged to be acceptable. Compared with manual contours, the uncertainties of automatically deformed contours were similar with regard to geometry and dosimetric endpoint. The day-to-day variations (1 standard deviation of errors) in the center-of-mass distance and volume were 1.61mm and 4.36%, respectively. The volumes tended to decrease with a median total loss of 21.3% (6.7-31.5%) and a median change rate of 0.7%/day (0.4-1.3%/day). Parotids migrated toward the patient center with a median total distance change of -5.26mm (0.00 to -16.35mm) and a median change rate of -0.22mm/day (0.02 to -0.56mm/day). CONCLUSION The deformable image registration and daily MVCT images provide an efficient and reliable assessment of parotid changes over the course of a radiation therapy.


International Journal of Radiation Oncology Biology Physics | 1999

Image localization for frameless stereotactic radiotherapy

Sanford L. Meeks; Frank J. Bova; Thomas H. Wagner; John M. Buatti; William A. Friedman; Kelly D. Foote

PURPOSE Infrared light-emitting diodes (IRLEDs) have been used for optic-guided stereotactic radiotherapy localization at the University of Florida since 1995. The current paradigm requires stereotactic head ring placement for the patients first fraction. The stereotactic coordinates and treatment plan are determined relative to this head ring. The IRLEDs are attached to the patient via a maxillary bite plate, and the position of the IRLEDs relative to linac isocenter is saved to file. These positions are then recalled for each subsequent treatment to position the patient for fractionated therapy. The purpose of this article was to report a method of predicting the desired IRLED locations without need for the invasive head ring. METHODS AND MATERIALS To achieve the goal of frameless optic-guided radiotherapy, a method is required for direct localization of the IRLED positions from a CT scan. Because it is difficult to localize the exact point of light emission from a CT scan of an IRLED, a new bite plate was designed that contains eight aluminum fiducial markers along with the six IRLEDs. After a calibration procedure to establish the spatial relationship of the IRLEDs to the aluminum fiducial markers, the stereotactic coordinates of the IRLED light emission points are determined by localizing the aluminum fiducial markers in a stereotactic CT scan. RESULTS To test the accuracy of direct CT determination of the IRLED positions, phantom tests were performed. The average accuracy of isocenter localization using the IRLED bite plate was 0.65 +/- 0. 17 mm for these phantom tests. In addition, the optic-guided system has a unique compatibility with the stereotactic head ring. Therefore, the isocentric localization capability was clinically tested using the stereotactic head ring as the absolute standard. The ongoing clinical trial has shown the frameless system to provide a patient localization accuracy of 1.11 +/- 0.3 mm compared with the head ring. CONCLUSION Optic-guided radiotherapy using IRLEDs provides a mechanism through which setup accuracy may be improved over conventional techniques. To date, this optic-guided therapy has been used only as a hybrid system that requires use of the stereotactic head ring for the first fraction. This has limited its use in the routine clinical setting. Computation of the desired IRLED positions eliminates the need for the invasive head ring for the first fraction. This allows application of optic-guided therapy to a larger cohort of patients, and also facilitates the initiation of extracranial optic-guided radiotherapy.


International Journal of Radiation Oncology Biology Physics | 2001

Initial clinical experience with frameless stereotactic radiosurgery: Analysis of accuracy and feasibility

Timothy C. Ryken; Sanford L. Meeks; Edward C. Pennington; Patrick W. Hitchon; Vincent C. Traynelis; Nina A. Mayr; Frank J. Bova; William A. Friedman; John M. Buatti

PURPOSE To report on preliminary clinical experience with a novel image-guided frameless stereotactic radiosurgery system. METHODS AND MATERIALS Fifteen patients ranging in age from 14 to 81 received radiosurgery using a commercially available frameless stereotactic radiosurgery system. Pathologic diagnoses included metastases (12), recurrent primary intracranial sarcoma (1), recurrent central nervous system (CNS) lymphoma (1), and medulloblastoma with supratentorial seeding (1). Treatment accuracy was assessed from image localization of the stereotactic reference array and reproducibility of biteplate reseating. We chose 0.3 mm vector translation error and 0.3 degree rotation about each axis as the maximum tolerated misalignment before treating each arc. RESULTS The biteplates were found on average to reseat with a reproducibility of 0.24 mm. The mean registration error from CT localization was found to be 0.5 mm, which predicts that the average error at isocenter was 0.82 mm. No patient treatment was delivered beyond the maximum tolerated misalignment. The radiosurgery treatment was delivered in approximately 25 min per patient. CONCLUSION Our initial clinical experience with stereotactic radiotherapy using the infrared camera guidance system was promising, demonstrating clinical feasibility and accuracy comparable to many frame-based systems.

Collaboration


Dive into the Sanford L. Meeks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja M. Langen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Twyla R. Willoughby

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O Zeidan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gustavo H. Olivera

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth J. Ruchala

Wisconsin Alumni Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge