Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Robin Buell is active.

Publication


Featured researches published by C. Robin Buell.


Nature | 1999

Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana

Xiaoying Lin; Samir Kaul; Steve Rounsley; Terrance Shea; Maria Ines Benito; Christopher D. Town; Claire Fujii; Tanya Mason; Cheryl Bowman; Mary Barnstead; Tamara Feldblyum; C. Robin Buell; Karen A. Ketchum; John M. Lee; Catherine M. Ronning; Hean L. Koo; Kelly S. Moffat; Lisa Cronin; Mian Shen; Grace Pal; Susan Van Aken; Lowell Umayam; Luke J. Tallon; John E. Gill; Mark D. Adams; Ana J. Carrera; Todd Creasy; Howard M. Goodman; Chris R. Somerville; Greg P. Copenhaver

Arabidopsis thaliana (Arabidopsis) is unique among plant model organisms in having a small genome (130–140 Mb), excellent physical and genetic maps, and little repetitive DNA. Here we report the sequence of chromosome 2 from the Columbia ecotype in two gap-free assemblies (contigs) of 3.6 and 16 megabases (Mb). The latter represents the longest published stretch of uninterrupted DNA sequence assembled from any organism to date. Chromosome 2 represents 15% of the genome and encodes 4,037 genes, 49% of which have no predicted function. Roughly 250 tandem gene duplications were found in addition to large-scale duplications of about 0.5 and 4.5 Mb between chromosomes 2 and 1 and between chromosomes 2 and 4, respectively. Sequencing of nearly 2 Mb within the genetically defined centromere revealed a low density of recognizable genes, and a high density and diverse range of vestigial and presumably inactive mobile elements. More unexpected is what appears to be a recent insertion of a continuous stretch of 75% of the mitochondrial genome into chromosome 2.


Nucleic Acids Research | 2007

The TIGR Rice Genome Annotation Resource: improvements and new features

Shu Ouyang; Wei Zhu; John A. Hamilton; Haining Lin; Matthew Campbell; Kevin L. Childs; Françoise Thibaud-Nissen; Renae L. Malek; Yuandan Lee; Li Zheng; Joshua Orvis; Brian J. Haas; Jennifer R. Wortman; C. Robin Buell

In The Institute for Genomic Research Rice Genome Annotation project (), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42 653 non-transposable element-related genes encoding 49 472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13 237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31 739 gene models), representing ∼50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Rice | 2013

Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data

Yoshihiro Kawahara; Melissa de la Bastide; John P. Hamilton; Hiroyuki Kanamori; W. Richard McCombie; Shu Ouyang; David C. Schwartz; Tsuyoshi Tanaka; Jianzhong Wu; Shiguo Zhou; Kevin L. Childs; Rebecca M. Davidson; Haining Lin; L. M. Quesada-Ocampo; Brieanne Vaillancourt; Hiroaki Sakai; Sung Shin Lee; Jungsok Kim; Hisataka Numa; Takeshi Itoh; C. Robin Buell; Takashi Matsumoto

BackgroundRice research has been enabled by access to the high quality reference genome sequence generated in 2005 by the International Rice Genome Sequencing Project (IRGSP). To further facilitate genomic-enabled research, we have updated and validated the genome assembly and sequence for the Nipponbare cultivar of Oryza sativa (japonica group).ResultsThe Nipponbare genome assembly was updated by revising and validating the minimal tiling path of clones with the optical map for rice. Sequencing errors in the revised genome assembly were identified by re-sequencing the genome of two different Nipponbare individuals using the Illumina Genome Analyzer II/IIx platform. A total of 4,886 sequencing errors were identified in 321 Mb of the assembled genome indicating an error rate in the original IRGSP assembly of only 0.15 per 10,000 nucleotides. A small number (five) of insertions/deletions were identified using longer reads generated using the Roche 454 pyrosequencing platform. As the re-sequencing data were generated from two different individuals, we were able to identify a number of allelic differences between the original individual used in the IRGSP effort and the two individuals used in the re-sequencing effort. The revised assembly, termed Os-Nipponbare-Reference-IRGSP-1.0, is now being used in updated releases of the Rice Annotation Project and the Michigan State University Rice Genome Annotation Project, thereby providing a unified set of pseudomolecules for the rice community.ConclusionsA revised, error-corrected, and validated assembly of the Nipponbare cultivar of rice was generated using optical map data, re-sequencing data, and manual curation that will facilitate on-going and future research in rice. Detection of polymorphisms between three different Nipponbare individuals highlights that allelic differences between individuals should be considered in diversity studies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight

Junqi Song; James M. Bradeen; S. Kristine Naess; John A. Raasch; Susan M. Wielgus; Geraldine T. Haberlach; Jia Liu; Hanhui Kuang; Sandra Austin-Phillips; C. Robin Buell; John P. Helgeson; Jiming Jiang

Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating potato disease in the world. Control of late blight in the United States and other developed countries relies extensively on fungicide application. We previously demonstrated that the wild diploid potato species Solanum bulbocastanum is highly resistant to all known races of P. infestans. Potato germplasm derived from S. bulbocastanum has shown durable and effective resistance in the field. Here we report the cloning of the major resistance gene RB in S. bulbocastanum by using a map-based approach in combination with a long-range (LR)-PCR strategy. A cluster of four resistance genes of the CC-NBS-LRR (coiled coil–nucleotide binding site–Leu-rich repeat) class was found within the genetically mapped RB region. Transgenic plants containing a LR-PCR product of one of these four genes displayed broad spectrum late blight resistance. The cloned RB gene provides a new resource for developing late blight-resistant potato varieties. Our results also demonstrate that LR-PCR is a valuable approach to isolate genes that cannot be maintained in the bacterial artificial chromosome system.


Nature Genetics | 2004

Sequencing of a rice centromere uncovers active genes

Kiyotaka Nagaki; Zhukuan Cheng; Shu Ouyang; Paul B. Talbert; Mary Kim; Kristine M. Jones; Steven Henikoff; C. Robin Buell; Jiming Jiang

Centromeres are the last frontiers of complex eukaryotic genomes, consisting of highly repetitive sequences that resist mapping, cloning and sequencing. The centromere of rice Chromosome 8 (Cen8) has an unusually low abundance of highly repetitive satellite DNA, which allowed us to determine its sequence. A region of ∼750 kb in Cen8 binds rice CENH3, the centromere-specific H3 histone. CENH3 binding is contained within a larger region that has abundant dimethylation of histone H3 at Lys9 (H3-Lys9), consistent with Cen8 being embedded in heterochromatin. Fourteen predicted and at least four active genes are interspersed in Cen8, along with CENH3 binding sites. The retrotransposons located in and outside of the CENH3 binding domain have similar ages and structural dynamics. These results suggest that Cen8 may represent an intermediate stage in the evolution of centromeres from genic regions, as in human neocentromeres, to fully mature centromeres that accumulate megabases of homogeneous satellite arrays.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genomewide SNP variation reveals relationships among landraces and modern varieties of rice.

Kenneth L. McNally; Kevin L. Childs; Regina Bohnert; Rebecca M. Davidson; Keyan Zhao; Victor Jun Ulat; Georg Zeller; Richard M. Clark; Douglas R. Hoen; Thomas E. Bureau; Renee Stokowski; Dennis G. Ballinger; Kelly A. Frazer; D. R. Cox; Badri Padhukasahasram; Carlos Bustamante; Detlef Weigel; David J. Mackill; Richard Bruskiewich; Gunnar Rätsch; C. Robin Buell; Hei Leung; Jan E. Leach

Rice, the primary source of dietary calories for half of humanity, is the first crop plant for which a high-quality reference genome sequence from a single variety was produced. We used resequencing microarrays to interrogate 100 Mb of the unique fraction of the reference genome for 20 diverse varieties and landraces that capture the impressive genotypic and phenotypic diversity of domesticated rice. Here, we report the distribution of 160,000 nonredundant SNPs. Introgression patterns of shared SNPs revealed the breeding history and relationships among the 20 varieties; some introgressed regions are associated with agronomic traits that mark major milestones in rice improvement. These comprehensive SNP data provide a foundation for deep exploration of rice diversity and gene–trait relationships and their use for future rice improvement.


Genome Biology | 2008

Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments

Brian J. Haas; Wei Zhu; Mihaela Pertea; Jonathan E. Allen; Joshua Orvis; Owen White; C. Robin Buell; Jennifer R. Wortman

EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.


Plant Journal | 2011

Genome-wide atlas of transcription during maize development

Rajandeep S. Sekhon; Haining Lin; Kevin L. Childs; Candice N. Hansey; C. Robin Buell; Natalia de Leon; Shawn M. Kaeppler

Maize is an important model species and a major constituent of human and animal diets. It has also emerged as a potential feedstock and model system for bioenergy research due to recent worldwide interest in developing plant biomass-based, carbon-neutral liquid fuels. To understand how the underlying genome sequence results in specific plant phenotypes, information on the temporal and spatial transcription patterns of genes is crucial. Here we present a comprehensive atlas of global transcription profiles across developmental stages and plant organs. We used a NimbleGen microarray containing 80,301 probe sets to profile transcription patterns in 60 distinct tissues representing 11 major organ systems of inbred line B73. Of the 30,892 probe sets representing the filtered B73 gene models, 91.4% were expressed in at least one tissue. Interestingly, 44.5% of the probe sets were expressed in all tissues, indicating a substantial overlap of gene expression among plant organs. Clustering of maize tissues based on global gene expression profiles resulted in formation of groups of biologically related tissues. We utilized this dataset to examine the expression of genes that encode enzymes in the lignin biosynthetic pathway, and found that expansion of distinct gene families was accompanied by divergent, tissue-specific transcription patterns of the paralogs. This comprehensive expression atlas represents a valuable resource for gene discovery and functional characterization in maize.


The Plant Cell | 2002

Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon

Zhukan K. Cheng; Fenggao G. Dong; Tim Langdon; Shu Ouyang; C. Robin Buell; Minghong Gu; Frederick R. Blattner; Jiming Jiang

The centromere of eukaryotic chromosomes is essential for the faithful segregation and inheritance of genetic information. In the majority of eukaryotic species, centromeres are associated with highly repetitive DNA, and as a consequence, the boundary for a functional centromere is difficult to define. In this study, we demonstrate that the centers of rice centromeres are occupied by a 155-bp satellite repeat, CentO, and a centromere-specific retrotransposon, CRR. The CentO satellite is located within the chromosomal regions to which the spindle fibers attach. CentO is quantitatively variable among the 12 rice centromeres, ranging from 65 kb to 2 Mb, and is interrupted irregularly by CRR elements. The break points of 14 rice centromere misdivision events were mapped to the middle of the CentO arrays, suggesting that the CentO satellite is located within the functional domain of rice centromeres. Our results demonstrate that the CentO satellite may be a key DNA element for rice centromere function.

Collaboration


Dive into the C. Robin Buell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiming Jiang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Childs

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Shawn M. Kaeppler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Shu Ouyang

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haining Lin

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Emily Crisovan

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge