Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haining Lin is active.

Publication


Featured researches published by Haining Lin.


Nucleic Acids Research | 2007

The TIGR Rice Genome Annotation Resource: improvements and new features

Shu Ouyang; Wei Zhu; John A. Hamilton; Haining Lin; Matthew Campbell; Kevin L. Childs; Françoise Thibaud-Nissen; Renae L. Malek; Yuandan Lee; Li Zheng; Joshua Orvis; Brian J. Haas; Jennifer R. Wortman; C. Robin Buell

In The Institute for Genomic Research Rice Genome Annotation project (), we have continued to update the rice genome sequence with new data and improve the quality of the annotation. In our current release of annotation (Release 4.0; January 12, 2006), we have identified 42 653 non-transposable element-related genes encoding 49 472 gene models as a result of the detection of alternative splicing. We have refined our identification methods for transposable element-related genes resulting in 13 237 genes that are related to transposable elements. Through incorporation of multiple transcript and proteomic expression data sets, we have been able to annotate 24 799 genes (31 739 gene models), representing ∼50% of the total gene models, as expressed in the rice genome. All structural and functional annotation is viewable through our Rice Genome Browser which currently supports 59 tracks. Enhanced data access is available through web interfaces, FTP downloads and a Data Extractor tool developed in order to support discrete dataset downloads.


Rice | 2013

Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data

Yoshihiro Kawahara; Melissa de la Bastide; John P. Hamilton; Hiroyuki Kanamori; W. Richard McCombie; Shu Ouyang; David C. Schwartz; Tsuyoshi Tanaka; Jianzhong Wu; Shiguo Zhou; Kevin L. Childs; Rebecca M. Davidson; Haining Lin; L. M. Quesada-Ocampo; Brieanne Vaillancourt; Hiroaki Sakai; Sung Shin Lee; Jungsok Kim; Hisataka Numa; Takeshi Itoh; C. Robin Buell; Takashi Matsumoto

BackgroundRice research has been enabled by access to the high quality reference genome sequence generated in 2005 by the International Rice Genome Sequencing Project (IRGSP). To further facilitate genomic-enabled research, we have updated and validated the genome assembly and sequence for the Nipponbare cultivar of Oryza sativa (japonica group).ResultsThe Nipponbare genome assembly was updated by revising and validating the minimal tiling path of clones with the optical map for rice. Sequencing errors in the revised genome assembly were identified by re-sequencing the genome of two different Nipponbare individuals using the Illumina Genome Analyzer II/IIx platform. A total of 4,886 sequencing errors were identified in 321 Mb of the assembled genome indicating an error rate in the original IRGSP assembly of only 0.15 per 10,000 nucleotides. A small number (five) of insertions/deletions were identified using longer reads generated using the Roche 454 pyrosequencing platform. As the re-sequencing data were generated from two different individuals, we were able to identify a number of allelic differences between the original individual used in the IRGSP effort and the two individuals used in the re-sequencing effort. The revised assembly, termed Os-Nipponbare-Reference-IRGSP-1.0, is now being used in updated releases of the Rice Annotation Project and the Michigan State University Rice Genome Annotation Project, thereby providing a unified set of pseudomolecules for the rice community.ConclusionsA revised, error-corrected, and validated assembly of the Nipponbare cultivar of rice was generated using optical map data, re-sequencing data, and manual curation that will facilitate on-going and future research in rice. Detection of polymorphisms between three different Nipponbare individuals highlights that allelic differences between individuals should be considered in diversity studies.


Plant Journal | 2011

Genome-wide atlas of transcription during maize development

Rajandeep S. Sekhon; Haining Lin; Kevin L. Childs; Candice N. Hansey; C. Robin Buell; Natalia de Leon; Shawn M. Kaeppler

Maize is an important model species and a major constituent of human and animal diets. It has also emerged as a potential feedstock and model system for bioenergy research due to recent worldwide interest in developing plant biomass-based, carbon-neutral liquid fuels. To understand how the underlying genome sequence results in specific plant phenotypes, information on the temporal and spatial transcription patterns of genes is crucial. Here we present a comprehensive atlas of global transcription profiles across developmental stages and plant organs. We used a NimbleGen microarray containing 80,301 probe sets to profile transcription patterns in 60 distinct tissues representing 11 major organ systems of inbred line B73. Of the 30,892 probe sets representing the filtered B73 gene models, 91.4% were expressed in at least one tissue. Interestingly, 44.5% of the probe sets were expressed in all tissues, indicating a substantial overlap of gene expression among plant organs. Clustering of maize tissues based on global gene expression profiles resulted in formation of groups of biologically related tissues. We utilized this dataset to examine the expression of genes that encode enzymes in the lignin biosynthetic pathway, and found that expansion of distinct gene families was accompanied by divergent, tissue-specific transcription patterns of the paralogs. This comprehensive expression atlas represents a valuable resource for gene discovery and functional characterization in maize.


Genome Biology | 2010

Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire

C. André Lévesque; Henk Brouwer; Liliana M. Cano; John P. Hamilton; Carson Holt; Edgar Huitema; Sylvain Raffaele; Gregg P. Robideau; Marco Thines; Joe Win; Marcelo M. Zerillo; Jeffrey L. Boore; Dana Busam; Bernard Dumas; Steve Ferriera; Susan I. Fuerstenberg; Claire M. M. Gachon; Elodie Gaulin; Francine Govers; Laura J. Grenville-Briggs; Neil R. Horner; Jessica B. Hostetler; Rays H. Y. Jiang; Justin Johnson; Theerapong Krajaejun; Haining Lin; Harold J. G. Meijer; Barry Moore; Paul F. Morris; Vipaporn Phuntmart

BackgroundPythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species.ResultsThe P. ultimum genome (42.8 Mb) encodes 15,290 genes and has extensive sequence similarity and synteny with related Phytophthora species, including the potato blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86% of genes, with detectable differential expression of suites of genes under abiotic stress and in the presence of a host. The predicted proteome includes a large repertoire of proteins involved in plant pathogen interactions, although, surprisingly, the P. ultimum genome does not encode any classical RXLR effectors and relatively few Crinkler genes in comparison to related phytopathogenic oomycetes. A lower number of enzymes involved in carbohydrate metabolism were present compared to Phytophthora species, with the notable absence of cutinases, suggesting a significant difference in virulence mechanisms between P. ultimum and more host-specific oomycete species. Although we observed a high degree of orthology with Phytophthora genomes, there were novel features of the P. ultimum proteome, including an expansion of genes involved in proteolysis and genes unique to Pythium. We identified a small gene family of cadherins, proteins involved in cell adhesion, the first report of these in a genome outside the metazoans.ConclusionsAccess to the P. ultimum genome has revealed not only core pathogenic mechanisms within the oomycetes but also lineage-specific genes associated with the alternative virulence and lifestyles found within the pythiaceous lineages compared to the Peronosporaceae.


Plant Physiology | 2005

The Institute for Genomic Research Osa1 Rice Genome Annotation Database

Qiaoping Yuan; Shu Ouyang; Aihui Wang; Wei Zhu; Rama Maiti; Haining Lin; John P. Hamilton; Brian J. Haas; Razvan Sultana; Foo Cheung; Jennifer R. Wortman; C. Robin Buell

We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 nontransposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.


BMC Biology | 2005

The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

Nathalie Choisne; Nadia Demange; Gisela Orjeda; Sylvie Samain; Angélique D'Hont; Laurence Cattolico; Eric Pelletier; Arnaud Couloux; Béatrice Segurens; Patrick Wincker; Claude Scarpelli; Jean Weissenbach; Marcel Salanoubat; Nagendra K. Singh; T. Mohapatra; T. R. Sharma; Kishor Gaikwad; Archana Singh; Vivek Dalal; Subodh K. Srivastava; Anupam Dixit; Ajit K. Pal; Irfan Ahmad Ghazi; Mahavir Yadav; Awadhesh Pandit; Ashutosh Bhargava; K. Sureshbabu; Rekha Dixit; Harvinder Singh; Suresh C. Swain

Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.BackgroundRice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals.ResultsWe have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes.ConclusionBecause the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested.


Plant Journal | 2012

Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution

Rebecca M. Davidson; Malali Gowda; Gaurav D. Moghe; Haining Lin; Brieanne Vaillancourt; Shin Han Shiu; Ning Jiang; C. Robin Buell

The Poaceae family, also known as the grasses, includes agronomically important cereal crops such as rice, maize, sorghum, and wheat. Previous comparative studies have shown that much of the gene content is shared among the grasses; however, functional conservation of orthologous genes has yet to be explored. To gain an understanding of the genome-wide patterns of evolution of gene expression across reproductive tissues, we employed a sequence-based approach to compare analogous transcriptomes in species representing three Poaceae subgroups including the Pooideae (Brachypodium distachyon), the Panicoideae (sorghum), and the Ehrhartoideae (rice). Our transcriptome analyses reveal that only a fraction of orthologous genes exhibit conserved expression patterns. A high proportion of conserved orthologs include genes that are upregulated in physiologically similar tissues such as leaves, anther, pistil, and embryo, while orthologs that are highly expressed in seeds show the most diverged expression patterns. More generally, we show that evolution of gene expression profiles and coding sequences in the grasses may be linked. Genes that are highly and broadly expressed tend to be conserved at the coding sequence level while genes with narrow expression patterns show accelerated rates of sequence evolution. We further show that orthologs in syntenic genomic blocks are more likely to share correlated expression patterns compared with non-syntenic orthologs. These findings are important for agricultural improvement because sequence information is transferred from model species, such as Brachypodium, rice, and sorghum to crop plants without sequenced genomes.


The Plant Cell | 2013

CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds

Sabrina Gonzalez-Jorge; Sun-Hwa Ha; Maria Magallanes-Lundback; Laura Ullrich Gilliland; Ailing Zhou; Alexander E. Lipka; Yen Nhu Nguyen; Ruthie Angelovici; Haining Lin; Jason Cepela; Holly Little; C. Robin Buell; Michael A. Gore; Dean DellaPenna

Analysis of natural variation in Arabidopsis identified CAROTENOID CLEAVAGE DIOXYGENASE4 (CCD4) as a major negative regulator of β-carotene content in seeds and senescing leaves. Given that global vitamin A deficiency is due in part to low β-carotene levels in seeds of major food crops, this study suggests that CCDs may be critical targets for enhancing the provitamin A carotenoid levels of food crops. Experimental approaches targeting carotenoid biosynthetic enzymes have successfully increased the seed β-carotene content of crops. However, linkage analysis of seed carotenoids in Arabidopsis thaliana recombinant inbred populations showed that only 21% of quantitative trait loci, including those for β-carotene, encode carotenoid biosynthetic enzymes in their intervals. Thus, numerous loci remain uncharacterized and underutilized in biofortification approaches. Linkage mapping and genome-wide association studies of Arabidopsis seed carotenoids identified CAROTENOID CLEAVAGE DIOXYGENASE4 (CCD4) as a major negative regulator of seed carotenoid content, especially β-carotene. Loss of CCD4 function did not affect carotenoid homeostasis during seed development but greatly reduced carotenoid degradation during seed desiccation, increasing β-carotene content 8.4-fold relative to the wild type. Allelic complementation of a ccd4 null mutant demonstrated that single-nucleotide polymorphisms and insertions and deletions at the locus affect dry seed carotenoid content, due at least partly to differences in CCD4 expression. CCD4 also plays a major role in carotenoid turnover during dark-induced leaf senescence, with β-carotene accumulation again most strongly affected in the ccd4 mutant. These results demonstrate that CCD4 plays a major role in β-carotene degradation in drying seeds and senescing leaves and suggest that CCD4 orthologs would be promising targets for stabilizing and increasing the level of provitamin A carotenoids in seeds of major food crops.


The Plant Genome | 2011

Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

Rebecca M. Davidson; Candice N. Hansey; Malali Gowda; Kevin L. Childs; Haining Lin; Brieanne Vaillancourt; Rajandeep S. Sekhon; Natalia de Leon; Shawn M. Kaeppler; Ning Jiang; C. Robin Buell

Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence‐based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize (Zea mays L.) reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization‐based methods demonstrated the utility of ribonucleic acid sequencing (RNA‐seq) for expression determination and differentiation of paralagous genes (∼85% of maize genes). Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre‐ vs. postemergence cobs) to 48% (pollen vs. ovule) of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.


PLOS ONE | 2011

The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

Alicia N. Massa; Kevin L. Childs; Haining Lin; Glenn J. Bryan; Giovanni Giuliano; C. Robin Buell

Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family.

Collaboration


Dive into the Haining Lin's collaboration.

Top Co-Authors

Avatar

C. Robin Buell

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Childs

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Shu Ouyang

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Wei Zhu

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean DellaPenna

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge