Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Roger White is active.

Publication


Featured researches published by C. Roger White.


Biochimica et Biophysica Acta | 1999

Biological aspects of reactive nitrogen species.

Rakesh P. Patel; Joanne McAndrew; Hassan Sellak; C. Roger White; Hanjoong Jo; Bruce A. Freeman; Victor M. Darley-Usmar

Nitric oxide (NO) plays an important role as a cell-signalling molecule, anti-infective agent and, as most recently recognised, an antioxidant. The metabolic fate of NO gives rise to a further series of compounds, collectively known as the reactive nitrogen species (RNS), which possess their own unique characteristics. In this review we discuss this emerging aspect of the NO field in the context of the formation of the RNS and what is known about their effects on biological systems. While much of the insight into the RNS has been gained from the extensive chemical characterisation of these species, to reveal biological consequences this approach must be complemented by direct measures of physiological function. Although we do not know the consequences of many of the dominant chemical reactions of RNS an intriguing aspect is now emerging. This review will illustrate how, when specificity and amplification through cell signalling mechanisms are taken into account, the less significant reactions, in terms of yield or rates, can explain many of the biological responses of exposure of cells or physiological systems to RNS.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease

Mutay Aslan; Thomas M. Ryan; Brian Adler; Tim M. Townes; Dale A. Parks; J. Anthony Thompson; Albert Tousson; Mark T. Gladwin; Rakesh P. Patel; Margaret M. Tarpey; Ines Batinic-Haberle; C. Roger White; Bruce A. Freeman

Plasma xanthine oxidase (XO) activity was defined as a source of enhanced vascular superoxide (O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document}) and hydrogen peroxide (H2O2) production in both sickle cell disease (SCD) patients and knockout-transgenic SCD mice. There was a significant increase in the plasma XO activity of SCD patients that was similarly reflected in the SCD mouse model. Western blot and enzymatic analysis of liver tissue from SCD mice revealed decreased XO content. Hematoxylin and eosin staining of liver tissue of knockout-transgenic SCD mice indicated extensive hepatocellular injury that was accompanied by increased plasma content of the liver enzyme alanine aminotransferase. Immunocytochemical and enzymatic analysis of XO in thoracic aorta and liver tissue of SCD mice showed increased vessel wall and decreased liver XO, with XO concentrated on and in vascular luminal cells. Steady-state rates of vascular O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document} production, as indicated by coelenterazine chemiluminescence, were significantly increased, and nitric oxide (⋅NO)-dependent vasorelaxation of aortic ring segments was severely impaired in SCD mice, implying oxidative inactivation of ⋅NO. Pretreatment of aortic vessels with the superoxide dismutase mimetic manganese 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin markedly decreased O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document} levels and significantly restored acetylcholine-dependent relaxation, whereas catalase had no effect. These data reveal that episodes of intrahepatic hypoxia-reoxygenation associated with SCD can induce the release of XO into the circulation from the liver. This circulating XO can then bind avidly to vessel luminal cells and impair vascular function by creating an oxidative milieu and catalytically consuming ⋅NO via O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{2}^{{\cdot}-}}}\end{equation*}\end{document}-dependent mechanisms.


Circulation Research | 1999

Chemiluminescent Detection of Oxidants in Vascular Tissue: Lucigenin But Not Coelenterazine Enhances Superoxide Formation

Margaret M. Tarpey; C. Roger White; Edward Suarez; Gloria J. Richardson; Rafael Radi; Bruce A. Freeman

Lucigenin-amplified chemiluminescence has frequently been used to assess the formation of superoxide in vascular tissues. However, the ability of lucigenin to undergo redox cycling in purified enzyme-substrate mixtures has raised questions concerning the use of lucigenin as an appropriate probe for the measurement of superoxide production. Addition of lucigenin to reaction mixtures of xanthine oxidase plus NADH resulted in increased oxygen consumption, as well as superoxide dismutase-inhibitable reduction of cytochrome c, indicative of enhanced rates of superoxide formation. Additionally, it was revealed that lucigenin stimulated oxidant formation by both cultured bovine aortic endothelial cells and isolated rings from rat aorta. Lucigenin treatment resulted in enhanced hydrogen peroxide release from endothelial cells, whereas exposure to lucigenin resulted in inhibition of endothelium-dependent relaxation in isolated aortic rings that was superoxide dismutase inhibitable. In contrast, the chemiluminescent probe coelenterazine had no significant effect on xanthine oxidase-dependent oxygen consumption, endothelial cell hydrogen peroxide release, or endothelium-dependent relaxation. Study of enzyme and vascular systems indicated that coelenterazine chemiluminescence is a sensitive marker for detecting both superoxide and peroxynitrite.


Hypertension | 2000

Elevated Sympathetic Activity Contributes to Hypertension and Salt Sensitivity in Diabetic Obese Zucker Rats

Scott H. Carlson; Jonathon Shelton; C. Roger White; J. Michael Wyss

Zucker rats are a useful model in which to define the mechanisms that link obesity to diabetes and associated cardiovascular disease. The present study tests the hypothesis that diabetic obese (compared with nondiabetic lean) Zucker rats are hypertensive and display a further increase in arterial pressure when fed a high salt diet. Male, nondiabetic lean and diabetic obese Zucker rats were chronically instrumented with telemetry probes and fed a basal salt diet for 3 weeks followed by exposure to a high salt diet for 11 days. On the basal diet, obese (vs lean) rats had significantly higher arterial pressures ( approximately 13 mm Hg), and the high salt diet significantly elevated mean arterial pressure (MAP) in obese (but not lean) Zucker rats ( approximately 12 mm Hg). Blockade of the sympathetic nervous system with hexamethonium caused a significantly larger decrease in MAP in obese (vs lean) Zucker rats fed the basal diet (51 vs 33 mm Hg), but the high salt diet did not increase the hexamethonium-induced reduction in arterial pressure in obese rats. Acute blockade of angiotensin receptors with losartan resulted in similar decreases in MAP in both groups on either diet. Acetylcholine-induced vasodilatory capacity of the carotid artery was significantly less in the obese (vs lean) Zucker rats. Together these data indicate that increased sympathetic nervous system activity and decreased vascular reactivity may contribute to elevated arterial pressure in type 2 diabetic, obese Zucker rats, but the sympathetic nervous system does not appear to contribute to the dietary salt-sensitive hypertension in this model.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Protein O-GlcNAcylation: a new signaling paradigm for the cardiovascular system

Boglárka Laczy; Bradford G. Hill; Kai Wang; Andrew J. Paterson; C. Roger White; Dongqi Xing; Yiu-Fai Chen; Victor M. Darley-Usmar; Suzanne Oparil; John C. Chatham

The posttranslational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide beta-N-acetylglucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification. Protein O-GlcNAcylation is rapidly emerging as a key regulator of critical biological processes including nuclear transport, translation and transcription, signal transduction, cytoskeletal reorganization, proteasomal degradation, and apoptosis. Increased levels of O-GlcNAc have been implicated as a pathogenic contributor to glucose toxicity and insulin resistance, which are both major hallmarks of diabetes mellitus and diabetes-related cardiovascular complications. Conversely, there is a growing body of data demonstrating that the acute activation of O-GlcNAc levels is an endogenous stress response designed to enhance cell survival. Reports on the effect of altered O-GlcNAc levels on the heart and cardiovascular system have been growing rapidly over the past few years and have implicated a role for O-GlcNAc in contributing to the adverse effects of diabetes on cardiovascular function as well as mediating the response to ischemic injury. Here, we summarize our present understanding of protein O-GlcNAcylation and its effect on the regulation of cardiovascular function. We examine the pathways regulating protein O-GlcNAcylation and discuss, in more detail, our understanding of the role of O-GlcNAc in both mediating the adverse effects of diabetes as well as its role in mediating cellular protective mechanisms in the cardiovascular system. In addition, we also explore the parallels between O-GlcNAc signaling and redox signaling, as an alternative paradigm for understanding the role of O-GlcNAcylation in regulating cell function.


Journal of Biological Chemistry | 1998

Nitrosation of Uric Acid by Peroxynitrite FORMATION OF A VASOACTIVE NITRIC OXIDE DONOR

Kelly A. Skinner; C. Roger White; Rakesh P. Patel; Sidhartha Tan; Stephen Barnes; Marion Kirk; Victor M. Darley-Usmar; Dale A. Parks

Peroxynitrite (ONOO−), formed by the reaction between nitric oxide (·NO) and superoxide, has been implicated in the etiology of numerous disease processes. Low molecular weight antioxidants, including uric acid, may minimize ONOO−--mediated damage to tissues. The tissue-sparing effects of uric acid are typically attributed to oxidant scavenging; however, little attention has been paid to the biology of the reaction products. In this study, a previously unidentified uric acid derivative was detected in ONOO−-treated human plasma. The product of the uric acid/ONOO− reaction resulted in endothelium-independent vasorelaxation of rat thoracic aorta, with an EC50 value in the range of 0.03–0.3 μm. Oxyhemoglobin, a ·NO scavenger, completely attenuated detectable ·NO release and vascular relaxation. Uric acid plus decomposed ONOO− neither released ·NO nor altered vascular reactivity. Electrochemical quantification of ·NO confirmed that the uric acid/ONOO− reaction resulted in spontaneous (thiol-independent) and protracted (t½ ∼ 125 min) release of ·NO. Mass spectroscopic analysis indicated that the product was a nitrated uric acid derivative. The uric acid nitration/nitrosation product may play a pivotal role in human pathophysiology by releasing ·NO, which could decrease vascular tone, increase tissue blood flow, and thereby constitute a role for uric acid not previously described.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Nitrolinoleate, a nitric oxide-derived mediator of cell function: Synthesis, characterization, and vasomotor activity

Dong Gun Lim; Scott Sweeney; Allison Bloodsworth; C. Roger White; Phillip Chumley; N. Rama Krishna; Francisco J. Schopfer; Valerie Bridget O'Donnell; Jason P. Eiserich; Bruce A. Freeman

Nitric oxide (•NO) and •NO-derived reactive species rapidly react with lipids during both autocatalytic and enzymatic oxidation reactions to yield nitrated derivatives that serve as cell signaling molecules. Herein we report the synthesis, purification, characterization, and bioactivity of nitrolinoleate (LNO2). Nitroselenylation of linoleic acid yielded LNO2 that was purified by solvent extraction, silicic acid chromatography, and reverse-phase HPLC. Structural characterization was performed by IR spectroscopy, 15N-NMR, LC-negative ion electrospray mass spectroscopy (MS), and chemiluminescent nitrogen analysis. Quantitative MS analysis of cell and vessel LNO2 metabolism, using L[15N]O2 as an internal standard, revealed that LNO2 is rapidly metabolized by rat aortic smooth muscle (RASM) monolayers and rat thoracic aorta, resulting in nitrite production and up to 3-fold increases in cGMP (ED50 = 30 μM for RASM, 50 μM for aorta). LNO2 induced endothelium-independent relaxation of preconstricted rat aortic rings, which was unaffected by LG-nitro-l-arginine methyl ester addition and inhibited by the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazole[4,3-a]quinoxalin-1-one and the •NO scavenger HbO2. These results reveal that synthetic LNO2, identical to lipid derivatives produced biologically by the reaction of •NO and •NO-derived species with oxidizing unsaturated fatty acids (e.g., linoleate), can transduce vascular signaling actions of •NO.


Circulation | 1997

Estrogen Restores Endothelial Cell Function in an Experimental Model of Vascular Injury

C. Roger White; Jonathan Shelton; Shi-Juan Chen; Victor M. Darley-Usmar; Leslie Allen; Cheryl Nabors; Paul W. Sanders; Yiu-Fai Chen; Suzanne Oparil

BACKGROUND It has been suggested that reendothelialization of damaged blood vessels protects against the vascular injury response. The goal of the present study was to determine whether estrogen restores endothelial cell function in balloon-injured rat carotid arteries. METHODS AND RESULTS Ten-week-old male and female Sprague-Dawley rats with intact gonads underwent balloon injury to the right common carotid artery. Female rats were randomized to receive either daily subcutaneous injections of 17beta-estradiol (17betaE[2]; 20 microg x kg[-1] x d[-1]) or vehicle over the course of the study. Vessel morphology was assessed 2 weeks after injury. Significant neointima formation was observed in vehicle-treated males. This response was blunted in vehicle-treated and 17beta-E(2)-supplemented females. Intima-to-media ratios were 1.28+/-0.23 (males), 0.72+/-0.07 (vehicle-treated females), and 0.49+/-0.07 (17beta-E[2]supplemented females). To test whether reductions in neointimal lesion formation were related to the functional reendothelialization of the damaged vessel, endothelium-dependent relaxation was tested in isolated ring segments from the three experimental groups. Vessels were precontracted with phenylephrine followed by cumulative administration of acetylcholine, an endothelium-dependent vasodilator. Maximum relaxation to acetylcholine was 8.13+/-1.70% (males), 22.06+/-4.36% (vehicle-treated females), and 46.47+/-3.48% (17beta-E[2]-supplemented females). The enhanced endothelium-dependent relaxation of rings from 17betaE(2)-supplemented females correlated with reduced neointimal proliferation in this group. The concentration of nitric oxide metabolites in plasma correlated positively with plasma 17beta-E(2) concentration. CONCLUSIONS These results suggest that estrogen protects against neointimal injury in the balloon-injured rat, at least in part, by facilitating the reendothelialization of the damaged vessel.


Circulation Research | 2005

Inhibition of Lipopolysaccharide-Induced Inflammatory Responses by an Apolipoprotein AI Mimetic Peptide

Himanshu Gupta; Lijun Dai; Geeta Datta; David W. Garber; Hernan E. Grenett; Yanbing Li; Vinod K. Mishra; Mayakonda N. Palgunachari; Shaila P. Handattu; Sandra H. Gianturco; William A. Bradley; G. M. Anantharamaiah; C. Roger White

Previous studies suggest that high-density lipoprotein and apoAI inhibit lipopolysaccharide (LPS)-induced inflammatory responses. The goal of the current study was to test the hypothesis that the apoAI mimetic peptide L-4F exerts antiinflammatory effects similar to apoAI. Pretreatment of human umbilical vein endothelial cells (HUVECs) with LPS induced the adhesion of THP-1 monocytes. Incubation of cells with LPS and L-4F (1 to 50 &mgr;g/mL) reduced THP-1 adhesion in a concentration-dependent manner. This response was associated with a significant reduction in the synthesis of cytokines, chemokines, and adhesion molecules. L-4F reduced vascular cell adhesion molecule-1 expression induced by LPS or lipid A, whereas a control peptide (Sc-4F) showed no effect. In contrast to LPS treatment, L-4F did not inhibit IL-1&bgr;- or tumor necrosis factor-&agr;–induced vascular cell adhesion molecule-1 expression. The inhibitory effect of L-4F on LPS induction of inflammatory markers was associated with reduced binding of LPS to its plasma carrier molecule, lipopolysaccharide binding protein, and decreased binding of LPS to HUVEC monolayers. LPS and L-4F in HUVEC culture medium were fractionated by fast protein liquid chromatography and were localized to the same fractions, suggesting a physical interaction between these molecules. Proinflammatory responses to LPS are associated with the binding of lipid A to cell surface receptors. The current studies demonstrate that L-4F reduces the expression of inflammatory markers induced by LPS and lipid A and suggest that apoAI peptide mimetics may be useful in the treatment of inflammation associated with endotoxemia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis

Gin C. Chuang; Zhen Yang; David G. Westbrook; Melissa Pompilius; Carol A. Ballinger; C. Roger White; David M. Krzywanski; Edward M. Postlethwait; Scott W. Ballinger

More than 100 million people in the United States live in areas that exceed current ozone air quality standards. In addition to its known pulmonary effects, environmental ozone exposures have been associated with increased hospital admissions related to cardiovascular events, but to date, no studies have elucidated the potential molecular mechanisms that may account for exposure-related vascular impacts. Because of the known pulmonary redox and immune biology stemming from ozone exposure, we hypothesized that ozone inhalation would initiate oxidant stress, mitochondrial damage, and dysfunction within the vasculature. Accordingly, these factors were quantified in mice consequent to a cyclic, intermittent pattern of ozone or filtered air control exposure. Ozone significantly modulated vascular tone regulation and increased oxidant stress and mitochondrial DNA damage (mtDNA), which was accompanied by significantly decreased vascular endothelial nitric oxide synthase protein and indices of nitric oxide production. To examine influences on atherosclerotic lesion formation, apoE-/- mice were exposed as above, and aortic plaques were quantified. Exposure resulted in significantly increased atherogenesis compared with filtered air controls. Vascular mitochondrial damage was additionally quantified in ozone- and filtered air-exposed infant macaque monkeys. These studies revealed that ozone increased vascular mtDNA damage in nonhuman primates in a fashion consistent with known atherosclerotic lesion susceptibility in humans. Consequently, inhaled ozone, in the absence of other environmental toxicants, promotes increased vascular dysfunction, oxidative stress, mitochondrial damage, and atherogenesis.

Collaboration


Dive into the C. Roger White's collaboration.

Top Co-Authors

Avatar

G. M. Anantharamaiah

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Geeta Datta

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mayakonda N. Palgunachari

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Himanshu Gupta

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Victor M. Darley-Usmar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Dale A. Parks

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

David W. Garber

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Rakesh P. Patel

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shaila P. Handattu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Vinod K. Mishra

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge