Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geeta Datta is active.

Publication


Featured researches published by Geeta Datta.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Apolipoprotein A-I Mimetic Peptides

Mohamad Navab; G. M. Anantharamaiah; Srinivasa T. Reddy; Susan Hama; Greg Hough; Victor Grijalva; Nicholas Yu; Benjamin J. Ansell; Geeta Datta; David W. Garber; Alan M. Fogelman

Despite identical amino acid composition, differences in class A amphipathic helical peptides caused by differences in the order of amino acids on the hydrophobic face results in substantial differences in antiinflammatory properties. One of these peptides is an apolipoprotein A-I (apoA-I) mimetic, D-4F. When given orally to mice and monkeys, D-4F caused the formation of pre-beta high-density lipoprotein (HDL), improved HDL-mediated cholesterol efflux, reduced lipoprotein lipid hydroperoxides, increased paraoxonase activity, and converted HDL from pro-inflammatory to antiinflammatory. In apolipoprotein E (apoE)-null mice, D-4F increased reverse cholesterol transport from macrophages. Oral D-4F reduced atherosclerosis in apoE-null and low-density lipoprotein (LDL) receptor-null mice. In vitro when added to human plasma at nanomolar concentrations, D-4F caused the formation of pre-beta HDL, reduced lipoprotein lipid hydroperoxides, increased paraoxonase activity, and converted HDL from pro-inflammatory to antiinflammatory. Physical-chemical properties and the ability of various class A amphipathic helical peptides to activate lecithin cholesterol acyltransferase (LCAT) in vitro did not predict biologic activity in vivo. In contrast, the use of cultured human artery wall cells in evaluating these peptides was more predictive of their efficacy in vivo. We conclude that the antiinflammatory properties of different class A amphipathic helical peptides depends on subtle differences in the configuration of the hydrophobic face of the peptides, which determines the ability of the peptides to sequester inflammatory lipids. These differences appear to be too subtle to predict efficacy based on physical-chemical properties alone. However, understanding these physical-chemical properties provides an explanation for the mechanism of action of the active peptides.


Journal of Lipid Research | 2007

Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides

G. M. Anantharamaiah; Vinod K. Mishra; David W. Garber; Geeta Datta; Shaila P. Handattu; Mayakonda N. Palgunachari; Manjula Chaddha; Mohamad Navab; Srinivasa T. Reddy; Jere P. Segrest; Alan M. Fogelman

Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.


Circulation Research | 2005

Inhibition of Lipopolysaccharide-Induced Inflammatory Responses by an Apolipoprotein AI Mimetic Peptide

Himanshu Gupta; Lijun Dai; Geeta Datta; David W. Garber; Hernan E. Grenett; Yanbing Li; Vinod K. Mishra; Mayakonda N. Palgunachari; Shaila P. Handattu; Sandra H. Gianturco; William A. Bradley; G. M. Anantharamaiah; C. Roger White

Previous studies suggest that high-density lipoprotein and apoAI inhibit lipopolysaccharide (LPS)-induced inflammatory responses. The goal of the current study was to test the hypothesis that the apoAI mimetic peptide L-4F exerts antiinflammatory effects similar to apoAI. Pretreatment of human umbilical vein endothelial cells (HUVECs) with LPS induced the adhesion of THP-1 monocytes. Incubation of cells with LPS and L-4F (1 to 50 &mgr;g/mL) reduced THP-1 adhesion in a concentration-dependent manner. This response was associated with a significant reduction in the synthesis of cytokines, chemokines, and adhesion molecules. L-4F reduced vascular cell adhesion molecule-1 expression induced by LPS or lipid A, whereas a control peptide (Sc-4F) showed no effect. In contrast to LPS treatment, L-4F did not inhibit IL-1&bgr;- or tumor necrosis factor-&agr;–induced vascular cell adhesion molecule-1 expression. The inhibitory effect of L-4F on LPS induction of inflammatory markers was associated with reduced binding of LPS to its plasma carrier molecule, lipopolysaccharide binding protein, and decreased binding of LPS to HUVEC monolayers. LPS and L-4F in HUVEC culture medium were fractionated by fast protein liquid chromatography and were localized to the same fractions, suggesting a physical interaction between these molecules. Proinflammatory responses to LPS are associated with the binding of lipid A to cell surface receptors. The current studies demonstrate that L-4F reduces the expression of inflammatory markers induced by LPS and lipid A and suggest that apoAI peptide mimetics may be useful in the treatment of inflammation associated with endotoxemia.


Journal of Biological Chemistry | 2004

Aromatic residue position on the nonpolar face of class a amphipathic helical peptides determines biological activity.

Geeta Datta; Raquel F. Epand; Richard M. Epand; Manjula Chaddha; Matthew A. Kirksey; David W. Garber; Sissel Lund-Katz; Michael C. Phillips; Susan Hama; Mohamad Navab; Alan M. Fogelman; Mayakonda N. Palgunachari; Jere P. Segrest; G. M. Anantharamaiah

The apolipoprotein A-I mimetic peptide 4F (Ac-DWFKAFYDKVAEKFKEAF-NH2), with four Phe residues on the nonpolar face of the amphipathic α-helix, is strongly anti-inflammatory, whereas two 3F analogs (3F3 and 3F14) are not. To understand how changes in helix nonpolar face structure affect function, two additional 3F analogs, Ac-DKLKAFYDKVFEWAKEAF-NH2 (3F-1) and Ac-DKWKAVYDKFAEAFKEFL-NH2 (3F-2), were designed using the same amino acid composition as 3F3 and 3F14. The aromatic residues in 3F-1 and 3F-2 are near the polar-nonpolar interface and at the center of the nonpolar face of the helix, respectively. Like 4F, but in contrast to 3F3 and 3F14, these peptides effectively inhibited lytic peptide-induced hemolysis, oxidized phospholipid-induced monocyte chemotaxis, and scavenged lipid hydroperoxides from low density lipoprotein. High pressure liquid chromatography retention times and monolayer exclusion pressures indicated that there is no direct correlation of peptide function with lipid affinity. Fluorescence studies suggested that, although the peptides bind phospholipids similarly, the Trp residue in 4F, 3F-1, and 3F-2 is less motionally restricted than in 3F3 and 3F14. Based on these results and molecular modeling studies, we propose that the arrangement of aromatic residues in class A amphipathic helical molecules regulates entry of reactive oxygen species into peptide-phospholipid complexes, thereby reducing the extent of monocyte chemotaxis, an important step in atherosclerosis.


American Journal of Physiology-cell Physiology | 2010

Apolipoprotein A-I mimetic 4F alters the function of human monocyte-derived macrophages

Lesley E. Smythies; C. Roger White; Mayakonda N. Palgunachari; G. M. Anantharamaiah; Manjula Chaddha; Ashish Kurundkar; Geeta Datta

HDL and its major protein component apolipoprotein A-I (apoA-I) exert anti-inflammatory effects, inhibit monocyte chemotaxis/adhesion, and reduce vascular macrophage content in inflammatory conditions. In this study, we tested the hypothesis that the apoA-I mimetic 4F modulates the function of monocyte-derived macrophages (MDMs) by regulating the expression of key cell surface receptors on MDMs. Primary human monocytes and THP-1 cells were treated with 4F, apoA-I, or vehicle for 7 days and analyzed for expression of cell surface markers, adhesion to human endothelial cells, phagocytic function, cholesterol efflux capacity, and lipid raft organization. 4F and apoA-I treatment decreased the expression of HLA-DR, CD86, CD11b, CD11c, CD14, and Toll-like receptor-4 (TLR-4) compared with control cells, suggesting the induction of monocyte differentiation. Both treatments abolished LPS-induced mRNA for monocyte chemotactic protein-1 (MCP-1), macrophage inflammatory protein-1 (MIP-1), regulated on activation, normal T-expressed and presumably secreted (RANTES), IL-6, and TNF-alpha but significantly upregulated LPS-induced IL-10 expression. Moreover, 4F and apoA-I induced a 90% reduction in the expression of CD49d, a ligand for the VCAM-1 receptor, with a concurrent decrease in monocyte adhesion (55% reduction) to human endothelial cells and transendothelial migration (34 and 27% for 4F and apoA-I treatments) compared with vehicle treatment. In addition, phagocytosis of dextran-FITC beads was inhibited by 4F and apoA-I, a response associated with reduced expression of CD32. Finally, 4F and apoA-I stimulated cholesterol efflux from MDMs, leading to cholesterol depletion and disruption of lipid rafts. These data provide evidence that 4F, similar to apoA-I, induces profound functional changes in MDMs, possibly due to differentiation to an anti-inflammatory phenotype.


Current Opinion in Lipidology | 2004

Human apolipoprotein A-I and A-I mimetic peptides: potential for atherosclerosis reversal.

Mohamad Navab; G. M. Anantharamaiah; Srinivasa T. Reddy; Brian J. Van Lenten; Geeta Datta; David W. Garber; Alan M. Fogelman

Purpose of review Recent publications related to the potential use of apolipoprotein (apo)A-I and apoA-I mimetic peptides in the treatment of atherosclerosis are reviewed. Recent findings A preliminary report indicating that infusion of apoA-IMilano into humans once weekly for 5 weeks caused a significant decrease in coronary artery atheroma volume has sparked great interest in the potential therapeutic use of apoA-I. Recent studies have revealed that HDL quality (e.g. HDL apolipoprotein and lipid content, including oxidized lipids, particle size and electrophoretic mobility, associated enzymatic activities, inflammatory/anti-inflammatory properties, and ability to promote cholesterol efflux) may be more important than HDL-cholesterol levels. Therefore, when developing new strategies to raise HDL-cholesterol concentrations by interfering with HDL metabolism, one must consider the quality of the resulting HDL. In animal models, raising HDL-cholesterol levels by administering oral phospholipids improved both the quantity and quality of HDL and was associated with lesion regression. An apoA-I mimetic peptide, namely 4F synthesized from D-amino acids (D-4F), administered orally to mice did not raise HDL-cholesterol concentrations but promoted the formation of pre-β HDL containing increased paraoxonase activity, resulting in significant improvements in HDLs anti-inflammatory properties and ability to promote cholesterol efflux from macrophages in vitro. Oral D-4F also promoted reverse cholesterol efflux from macrophages in vivo. Summary The quality of HDL may be more important than HDL-cholesterol levels. ApoA-I and apoA-I mimetic peptides appear to have significant therapeutic potential in atherosclerosis.


Circulation | 2005

Apolipoprotein E Mimetic Peptide Dramatically Lowers Plasma Cholesterol and Restores Endothelial Function in Watanabe Heritable Hyperlipidemic Rabbits

Himanshu Gupta; C. Roger White; Shaila P. Handattu; David W. Garber; Geeta Datta; Manjula Chaddha; Lijun Dai; Sandra H. Gianturco; William A. Bradley; G. M. Anantharamaiah

Background—These studies were designed to determine whether the dual-domain peptide with a class A amphipathic helix linked to the receptor-binding domain of apolipoprotein (apo) E (Ac-hE-18A-NH2) possesses both antidyslipidemic and antiinflammatory properties. Methods and Results—A single bolus (15 mg/kg IV) of Ac-hE-18A-NH2 that contains LRKLRKRLLR (141- to 150-residue region of apo E) covalently linked to apo A-I mimetic peptide 18A not only reduced plasma cholesterol levels (baseline, 562±29.0 mg/dL versus 287.7±22.0 mg/dL at 18 hours, P<0.001) in the Watanabe heritable hyperlipidemic rabbit model but also significantly improved arterial endothelial function. This improvement was associated with a reduction in 2 markers of oxidative stress. First, the plasma lipid hydroperoxide content was reduced significantly, an effect associated with a 5-fold increase in HDL paraoxonase activity. Second, the formation of superoxide anion, a scavenger of nitric oxide, was also significantly reduced in arteries of these animals. Conclusions—Because dyslipidemia and endothelial dysfunction are common features of the atherosclerotic disease process, this unique dual-domain peptide has ideal composite properties that ameliorate key contributory factors to atherosclerosis.


Biochemistry | 2000

The receptor binding domain of apolipoprotein E, linked to a model class A amphipathic helix, enhances internalization and degradation of LDL by fibroblasts.

Geeta Datta; Manjula Chaddha; David W. Garber; Byung Hong Chung; Ewan M. Tytler; Nassrin Dashti; William A. Bradley; Sandra H. Gianturco; G. M. Anantharamaiah

Human apolipoprotein E (apo E) consists of two distinct domains, the lipid-associating domain (residues 192-299) and the globular domain (residues 1-191) which contains the LDL receptor (LDLR) binding site (residues 129-169). To test the hypothesis that an arginine-rich apo E receptor binding domain (residues 141-150) is sufficient to enhance low-density lipoprotein (LDL) uptake and clearance when covalently linked to a class A amphipathic helix, a peptide in which the receptor binding domain of human apo E, LRKLRKRLLR (hApoE[141-150]), is linked to 18A, a well-characterized high-affinity lipid-associating peptide (DWLKAFYDKVAEKLKEAF), we synthesized the peptide hApoE[141-150]-18A (hE18A) and its end-protected analogue, Ac-hE18A-NH(2). The importance of positively charged residues and the role of the hydrophobic residues in the receptor binding domain were also studied using four analogues. Ac-LRRLRRRLLR-18A-NH(2) [Ac-hE(R)18A-NH(2)] and Ac-LRKMRKRLMR-18A-NH(2) (Ac-mE18A-NH(2)) contained an extended hydrophobic face, including the receptor binding region. Control peptides, Ac-LRLLRKLKRR-18A-NH(2) [Ac-hE(Sc)18A-NH(2)], had the amino acid residues of the apo E receptor binding domain scrambled to disrupt the extended hydrophobic face, and Ac-RRRRRRRRRR-18A-NH(2) (Ac-R(10)18A-NH(2)) had only positively charged Arg residues as the receptor binding domain. The effect of the dual-domain peptides on the uptake and degradation of human LDL by fibroblasts was determined in murine embryonic fibroblasts (MEF1). LDL internalization was enhanced 3-, 5-, and 7-fold by Ac-mE18A-NH(2), Ac-hE18A-NH(2), and Ac-hE(R)18A-NH(2), respectively, whereas the control peptides had no significant biological activity. All three active peptides increased the level of degradation of LDL by 100%. The LDL binding and internalization to MEF1 cells in the presence of these peptides was not saturable over the LDL concentration range that was studied (1-10 microgram/mL). Furthermore, a similar enhancement of LDL internalization was observed independent of the presence of the LDL receptor-related protein (LRP), LDLR, or both. Pretreatment of cells with heparinase and heparitinase abolished more than 80% of the enhanced peptide-mediated LDL uptake and degradation by cells. We conclude that the dual-domain peptides enhanced LDL uptake and degradation by fibroblasts via a heparan sulfate proteoglycan (HSPG)-mediated pathway.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats

Zhenghao Zhang; Geeta Datta; Yun Zhang; Andrew P. Miller; Paulina Mochon; Yiu-Fai Chen; John C. Chatham; G. M. Anantharamaiah; C. Roger White

Systemic inflammation induces a multiple organ dysfunction syndrome that contributes to morbidity and mortality in septic patients. Since increasing plasma apolipoprotein A-I (apoA-I) and HDL may reduce the complications of sepsis, we tested the hypothesis that the apoA-I mimetic peptide 4F confers similar protective effects in rats undergoing cecal ligation and puncture (CLP) injury. Male Sprague-Dawley rats were randomized to undergo CLP or sham surgery. IL-6 levels were significantly elevated in plasma by 6 h after CLP surgery compared with shams. In subsequent studies, CLP rats were further subdivided to receive vehicle or 4F (10 mg/kg) by intraperitoneal injection, 6 h after sepsis induction. Sham-operated rats received saline. Echocardiographic studies showed a reduction in left ventricular end-diastolic volume, stroke volume, and cardiac output (CO) 24 h after CLP surgery. These changes were associated with reduced blood volume and left ventricular filling pressure. 4F treatment improved blood volume status, increased CO, and reduced plasma IL-6 in CLP rats. Total cholesterol (TC) and HDL were 79 +/- 5 and 61 +/- 4 mg/dl, respectively, in sham rats. TC was significantly reduced in CLP rats (54 +/- 3 mg/dl) due to a reduction in HDL (26 +/- 3 mg/dl). 4F administration to CLP rats attenuated the reduction in TC (69 +/- 4 mg/dl) and HDL (41 +/- 3 mg/dl) and prevented sepsis-induced changes in HDL protein composition. Increased plasma HDL in 4F-treated CLP rats was associated with an improvement in CO and reduced mortality. It is proposed that protective effects of 4F are related to its ability to prevent the sepsis-induced reduction in plasma HDL.


Atherosclerosis | 2010

Anti-inflammatory and recycling properties of an apolipoprotein mimetic peptide, Ac-hE18A-NH2

Geeta Datta; C. Roger White; Nassrin Dashti; Manjula Chaddha; Mayakonda N. Palgunachari; Himanshu Gupta; Shaila P. Handattu; David W. Garber; G. M. Anantharamaiah

Apolipoprotein E (apoE) exerts prominent anti-inflammatory effects and undergoes recycling by target cells. We previously reported that the peptide Ac-hE18A-NH(2), composed of the receptor binding domain (LRKLRKRLLR) of apoE covalently linked to the Class A amphipathic peptide 18A, dramatically lowers plasma cholesterol and lipid hydroperoxides and enhances paraoxonase activity in dyslipidemic animal models. The objective of this study was to determine whether this peptide, analogous to apoE, exerts anti-inflammatory effects and undergoes recycling under in vitro conditions. Pulse chase studies using [(125)I]-Ac-hE18A-NH(2) in THP-1 derived macrophages and HepG2 cells showed greater amounts of intact peptide in the cells at later time points indicating recycling of the peptide. Ac-hE18A-NH(2) induced a 2.5-fold increase in prebeta-HDL in the conditioned media of HepG2 cells. This effect persisted for 3 days after removal of the peptide from culture medium. Ac-hE18A-NH(2) also induced the secretion of cell surface apoE from THP-1 macrophages. In addition, the peptide increased cholesterol efflux from THP-1 cells by an ABCA1 independent mechanism. Moreover, Ac-hE18A-NH(2) inhibited LPS-induced vascular cell adhesion molecule-1 (VCAM-1) expression, and reduced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). It also reduced the secretion of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) from THP-1 macrophages even when administered post-LPS and abolished the 18-fold increase in LPS-induced mRNA levels for MCP-1 in THP-1 cells. Taken together, these results suggest that addition of the putative apoE receptor-domain to the Class A amphipathic peptide 18A results in a peptide that, similar to apoE, recycles, thus enabling the potentiation and prolongation of its anti-atherogenic and anti-inflammatory effects. Such a peptide has great potential as a therapeutic agent in the management of atherosclerosis and other inflammatory diseases.

Collaboration


Dive into the Geeta Datta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Garber

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Mayakonda N. Palgunachari

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

C. Roger White

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Manjula Chaddha

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Vinod K. Mishra

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Shaila P. Handattu

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Himanshu Gupta

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamad Navab

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge