Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C.S. Hallett is active.

Publication


Featured researches published by C.S. Hallett.


Marine and Freshwater Research | 2015

The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos

J.R. Tweedley; C.S. Hallett; R.M. Warwick; K. Robert Clarke; I. C. Potter

Runoff from an extreme storm on 22 March 2010 led, during the next 3 months, to the formation of a pronounced halocline and underlying hypoxia in the upper reaches of the microtidal Swan–Canning Estuary. Benthic macroinvertebrates were sampled between January 2010 and October 2011 at five sites along 10 km of this region. By mid-April, the number of species, total density, Simpson’s evenness index and taxonomic distinctness had declined markedly, crustaceans had disappeared and the densities of annelids and molluscs had declined slightly. These faunal attributes (except Simpson’s index) and species composition did not recover until after the end of the hypoxia. The survival of annelids and loss of crustaceans in this period reflects different sensitivities of these taxa to severe environmental stress. The results emphasise that microtidal estuaries with long residence times are highly vulnerable to the effects of environmental perturbations, particularly during warmer periods of the year.


Journal of Fish Biology | 2014

Characteristics of the ichthyofauna of a temperate microtidal estuary with a reverse salinity gradient, including inter-decadal comparisons

Lauren Veale; J.R. Tweedley; K.R. Clarke; C.S. Hallett; I. C. Potter

Data on the fish fauna of the Leschenault Estuary on the lower west coast of Australia were collected and used as a model to elucidate the characteristics of permanently open estuaries with a reverse salinity gradient, which undergo seasonal changes similar to many other estuaries with Mediterranean climate. Focus was placed on determining (1) the relationships of the number of species, density, life cycle category and species composition of fishes with region (within estuary), season and year and salinity, (2) whether species are partitioned along the lengths of such systems and (3) the extent and significance of any inter-decadal changes in species composition. The analyses and interpretation involved using multi-factorial permutational multivariate analysis of variance (PERMANOVA) and analysis of similarity (ANOSIM) designs, and three new or recently published visualization tools, i.e. modified non-metric multidimensional scaling (nMDS) plots, coherent species curves and segmented bubble plots. The base, lower, upper and apex regions of the Leschenault Estuary, along which the salinity increased in each season except in winter when most rainfall occurs, were sampled seasonally for the 2 years between winter 2008 and autumn 2010. Estuarine residents contributed twice as many individuals, but less than half the number of species as marine taxa. While the numbers of marine species and estuarine residents declined between the base or lower and apex regions, the individuals of marine species dominated the catches in the base region and estuarine residents in the other three regions. Ichthyofaunal composition in each region underwent conspicuous annual cyclical changes, due to time-staggered differences in recruitment among species, and changed sequentially along the estuary, both paralleling salinity trends. Different groups of species characterized the fauna in the different regions and seasons, thereby partitioning resources among species. The ichthyofauna of the apex region, in which salinities reached 54 and temperatures 36° C, recorded the highest maximum density and, in terms of abundance, was dominated (90%) by three atherinid species, emphasizing the ability of this family to tolerate extreme conditions. Comparisons between the data for 2008-2010 and 1994 demonstrate that the spotted hardyhead Craterocephalus mugiloides and the common hardyhead Atherinomorus vaigiensis had colonized and become abundant in the Leschenault Estuary in the intervening period. This represents a southwards extension of the distribution of these essentially tropical species during a period of increasing coastal water temperatures as a result of climate change. The abundance of weed-associated species, e.g. the western gobbleguts Ostorhinchus rueppellii and the soldier Gymnapistes marmoratus, increased, whereas that of the longfinned goby Favonigobius lateralis decreased, probably reflecting increases in eutrophication and siltation, respectively.


Hydrobiologia | 2016

Effects of a harmful algal bloom on the community ecology, movements and spatial distributions of fishes in a microtidal estuary

C.S. Hallett; F.J. Valesini; K. Robert Clarke; Steeg D. Hoeksema

Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.


Journal of Fish Biology | 2017

Interdecadal changes in the community, population and individual levels of the fish fauna of an extensively modified estuary: INTERDECADAL CHANGE IN ESTUARINE FISH FAUNA

F.J. Valesini; A. Cottingham; C.S. Hallett; K.R. Clarke

This study examined inter-period changes over two to three decades in the fish fauna of an urbanized estuary experiencing rapid population growth and a drying climate (Swan-Canning Estuary, Western Australia). Responses were compared at the fish community level (species composition; 1978-2009 in the shallows and 1993-2009 in deeper waters) and at the population and individual levels of an estuarine indicator species, black bream Acanthopagrus butcheri (biomass-abundance and per capita mass at age, respectively; 1993-2009). All three levels showed distinct shifts from earlier to later periods, but their patterns, sensitivity and breadth differed. Community composition changed markedly in the shallows of the lower-middle estuary between the late 1970s and all later periods and moderately between more disparate periods from 1995 to 2009. Several species trends could be linked to the increasing salinity of the estuary or declining dissolved oxygen levels in its middle-upper reaches. Community changes were, however, small or insignificant in the shallow and deeper waters of the upper estuary and deeper waters of the middle estuary, where environmental perturbations are often most pronounced. This may reflect the resilience of the limited suite of species that typify those reaches and thus their lack of sensitivity in reflecting longer-term change at the coarser level of mean abundance. One such species, the selected indicator, A. butcheri, did, however, show marked temporal changes at both the population and individual levels. Biomass decreased markedly in deeper waters while increasing in the shallows from earlier to later periods, presumably reflecting an onshore movement of fish, and per capita body mass in the 2+, 3+ and 4+ year classes fell steadily over time. Such changes probably indicate deteriorating habitat quality in the deeper waters. The study outcomes provide support for a multifaceted approach to the biomonitoring of estuaries using fishes and highlight the need for complementary monitoring of relevant stressors to better disentangle cause-effect pathways.


Regional Environmental Change | 2018

Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region

C.S. Hallett; Alistair J. Hobday; J.R. Tweedley; Peter A. Thompson; Kathryn McMahon; F.J. Valesini

Regions with a Mediterranean climate are generally predicted to become warmer and drier with climate change. Estuaries in these regions are influenced by a broad range of climate drivers and are particularly vulnerable to the effects of climate change. We examine observed and predicted effects of climate change on the estuaries of south-western Australia (SWA), where sustained warming and drying trends have caused dramatic declines in freshwater flows of up to 70% since the 1970s, as a case study of the impacts that might be expected in other Mediterranean regions. Current and projected impacts of climate change in SWA include progressive warming and ‘marinisation’ of estuaries; extended closure of periodically open systems; an increased frequency and severity of hypersaline conditions; enhanced water column stratification and hypoxia; and reduced flushing and greater retention of nutrients. We document the effects of these environmental changes on the habitats, biota and ecology of SWA estuaries, including phytoplankton, macrophytes, invertebrates and fish. For example, decreasing river flows will cause periodically open estuaries across SWA to remain closed for longer periods, inhibiting the extent to which marine taxa can access these systems, thus reducing species diversity, whereas marinisation of permanently open systems will increase species diversity. We discuss the broader relevance of our findings, placing them in a global context and highlighting implications for ecosystem services and human populations. Finally, we consider the adaptation options that could be implemented to reduce the impacts of climate change in Mediterranean climate regions.


Journal of Fish Biology | 2017

Diel shifts in the structure and function of nearshore estuarine fish communities

D. Yeoh; F.J. Valesini; C.S. Hallett; D. Abdo; J. Williams

Day-night shifts in the nearshore fish fauna of a temperate microtidal estuary were assessed using a holistic suite of structural and functional community attributes. Mean fish species richness and diversity (taxonomic distinctness) were higher at night across all regions of the estuary and seasons, concurring with the findings of numerous comparable studies reviewed worldwide, while the diel period in which mean abundance was higher varied among seasons. Likewise, species and functional guild compositions (the latter based on feeding modes and habitat use) both differed significantly between day and night, with the extent of the diel shift again varying seasonally. Daytime fish communities were characterized by higher abundances of Atherinidae, Sillaginidae and Mugilidae, while Gobiidae were far more abundant at night. Marked shifts in size composition were also evident, with smaller fishes (<100 mm total length, LT ) being more prevalent during the day and larger fishes (≥200 mm LT ) proportionally more abundant at night. The above diel shifts were feasibly related to a range of predator-prey interactions and feeding-related movements, namely a nocturnal decrease in top-order avian piscivory coupled with an increase in invertebrate prey availability, resulting in changes in the presence and catchability of certain fish species in shallow estuarine waters.


International Aquatic Research | 2017

Baseline survey of the fish fauna of a highly eutrophic estuary and evidence for its colonisation by Goldfish (Carassius auratus)

J.R. Tweedley; C.S. Hallett; S. Beatty

This study represents the first quantitative survey of the fish fauna of the highly eutrophic Vasse and Wonnerup estuaries, part of the Ramsar-listed Vasse-Wonnerup Wetland System in south-western Australia. Sampling at five sites in each of these estuaries occurred in January 2012 (austral summer) to provide a species inventory and determine whether the number of species, total density and fish community composition differed between the two water bodies. A total of 18,148 fish were recorded, representing six species across four families. Three species that can complete their life cycle within estuaries, i.e. the atherinids Lepthatherina wallacei and Atherinosoma elongata and the gobiid Pseudogobius olorum, dominated the fish fauna, accounting for >99% of all fish collected. No significant inter-estuary differences were observed in the mean number of species, mean total density or fish community composition. Although the fish community was depauperate in terms of the number of species, total density was high, reflecting the presence of permanent and seasonal barriers to the immigration of marine species into these estuaries and the highly productive nature of this system, respectively. Two introduced freshwater species, i.e. the Eastern Gambusia Gambusia holbrooki and the Goldfish, Carassius auratus, were recorded in the Vasse Estuary. As C. auratus was found in mesohaline conditions, individuals may be able to use the estuary as a ‘saltbridge’ to gain access to other tributaries and/or the Wonnerup Estuary, and thus expand their distribution. These findings are of concern given the potential deleterious biological and ecological effects of these alien species.


Estuarine Coastal and Shelf Science | 2012

Development and validation of fish-based, multimetric indices for assessing the ecological health of Western Australian estuaries

C.S. Hallett; F.J. Valesini; K. Robert Clarke; S. Alex Hesp; Steeg D. Hoeksema


Ecological Indicators | 2012

A method for selecting health index metrics in the absence of independent measures of ecological condition

C.S. Hallett; F.J. Valesini; K. Robert Clarke


Environmental Science & Policy | 2016

A review of Australian approaches for monitoring, assessing and reporting estuarine condition: I. International context and evaluation criteria

C.S. Hallett; F.J. Valesini; Michael Elliott

Collaboration


Dive into the C.S. Hallett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K.R. Clarke

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Abdo

Government of Western Australia

View shared research outputs
Top Co-Authors

Avatar

K. Robert Clarke

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge