C.T.A. Brown
University of St Andrews
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.T.A. Brown.
Optics Express | 2006
David Stevenson; B. Agate; Xanthi Tsampoula; P. Fischer; C.T.A. Brown; W. Sibbett; Andrew Riches; Frank Gunn-Moore; Kishan Dholakia
Photoporation is a rapidly expanding technique for the introduction of macromolecules into single cells. However, there remains no study into the true efficiency of this procedure. Here, we present a detailed analysis of transfection efficiency and cell viability for femtosecond optical transfection using a titanium sapphire laser at 800 nm. Photoporation of 4000 Chinese Hamster ovary cells was performed, representing the largest optical transfection study reported to date. We have investigated a range of laser fluences at the cell membrane and, at 1.2 microJ/cm(2), have found an average transfection efficiency of 50 +/- 10%. Contrary to recent literature, in which 100% efficiency is claimed, our measure of efficiency accounts for all irradiated cells, including those lost as a result of laser treatment, thereby providing a true biological measure of the technique.
Optics Express | 2012
W. Sibbett; A.A. Lagatsky; C.T.A. Brown
Some background as well as recent progress in the development of femtosecond lasers are discussed together with a brief outline of a few representative emergent applications in biology and medicine that are underpinned by access to such sources. We also provide a short summary of other contributions in this focus issue.
Optics Express | 2004
B. Agate; C.T.A. Brown; W. Sibbett; Kishan Dholakia
We perform a comparison of optical tweezing using continuous wave (cw) and femtosecond lasers. Measurement of the relative Q-values in the femtosecond and cw regimes shows that femtosecond optical tweezers are just as effective as cw optical tweezers. We also demonstrate simultaneous optical tweezing and in-situ control of two-photon fluorescence (at 400nm) from dye-doped polymer microspheres. By switching the 800 nm tweezing laser source between femtosecond and cw regimes, we turned the fluorescent signal from the tweezed particle on and off while maintaining an equivalent tweezing action. Femtosecond lasers can thus be used for optical tweezing and simultaneously utilized to induce nonlinear multi-photon processes such as two-photon excitation or even photoporation.
Optics Letters | 2005
A.A. Lagatsky; A.R. Sarmani; C.T.A. Brown; W. Sibbett; V. E. Kisel; A. G. Selivanov; I. A. Denisov; A. E. Troshin; K. V. Yumashev; N. V. Kuleshov; V. N. Matrosov; T. A. Matrosova; M. I. Kupchenko
We report the first demonstration, to our knowledge, of soft-aperture Kerr-lens mode locking in a diode-pumped femtosecond Yb3+:YVO4 laser. Near-transform-limited pulses as short as 61 fs are generated around a center wavelength of 1050 nm with an output power of 54 mW and a pulse repetition frequency of 104.5 MHz. This is, to our knowledge, the shortest pulse generated directly from an Yb laser having a crystalline host material. The femtosecond operation has a mode-locking threshold at an absorbed pump power of 190 mW. The nonlinear refractive indexes of the Yb3+:YVO4 crystal have been measured to be 19 x 10(-16) cm2/W and 15 x 10(-16) cm2/W for the sigma and pi polarizations, respectively, at 1080 nm.
Optics Express | 2009
F. M. Bain; A.A. Lagatsky; Robert R. Thomson; Nicholas D. Psaila; N. V. Kuleshov; Ajoy K. Kar; W. Sibbett; C.T.A. Brown
We demonstrate laser action in diode-pumped microchip monolithic cavity channel waveguides of Yb:KGd(WO(4))(2) and Yb:KY(WO(4))(2) that were fabricated by ultrafast laser writing. The maximum output power achieved was 18.6 mW with a threshold of approximately 100 mW from an Yb:KGd(WO(4))(2) waveguide laser operating at 1023 nm. The propagation losses for this waveguide structure were measured to be 1.9 dBcm(-1).
Optics Express | 2009
Khay Ming Tan; Michael Mazilu; T. H. Chow; Woei Ming Lee; K. Taguichi; Beng Koon Ng; W. Sibbett; C. S. Herrington; C.T.A. Brown; Kishan Dholakia
Common-path optical coherence tomography (CPOCT) is known to reduce group velocity dispersion and polarization mismatch between the reference and the sample arm as both arms share the same physical path. Existing implementations of CPOCT typically require one to incorporate an additional cover glass within the beam path of the sample arm to provide a reference signal. In this paper, we aim to further reduce this step by directly making use of the back-reflected signal, arising from a conical lens-tip fiber, as a reference signal. The conical lens, which is directly manufactured onto the optical fiber tip via a simple selective-chemical etching process, fulfils two functions acting as both the imaging lens and the self-aligning reference plane. We use a Fourier-domain OCT system to demonstrate the feasibility of this technique upon biological tissue. An in-fiber CPOCT technique may prove potentially useful in endoscopic OCT imaging.
Optics Express | 2004
A.A. Lagatsky; C.T.A. Brown; Wilson Sibbett
We report a highly efficient diode-pumped femtosecond Yb:KYW laser with a compact three-element resonator. Near-transform-limited pulses of 107fs duration at a centre wavelength of 1056nm are produced at a pulse repetition frequency of 294MHz by utilising softaperture Kerr-lens mode locking. The femtosecond operation had a modelocking threshold at a pump power of 250mW and the laser was tunable from 1042nm to 1075nm. The optical-to-optical conversion efficiency exceeded 50% in this femtosecond-pulse regime.
Applied Physics Letters | 2013
A.A. Lagatsky; Zhipei Sun; T. S. Kulmala; R. S. Sundaram; Silvia Milana; Felice Torrisi; O. L. Antipov; Y. Lee; Jong Hyun Ahn; C.T.A. Brown; W. Sibbett; A. C. Ferrari
We report a 2 μm ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼410 fs pulses, with a spectral width ∼11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing.
Optics Letters | 2000
A. Saher Helmy; David C. Hutchings; T. C. Kleckner; J.H. Marsh; A.C. Bryce; J. M. Arnold; C.R. Stanley; J. S. Aitchison; C.T.A. Brown; K. Moutzouris; M. Ebrahimzadeh
We report the observation of second-harmonic generation by type I quasi phase matching in a GaAs-AlAs superlattice waveguide. Quasi phase matching was achieved through modulation of the nonlinear coefficient chi((2))(zxy), which we realized by periodically tuning the superlattice bandgap. Second-harmonic generation was demonstrated for fundamental wavelengths from 1480 to 1520 nm, from the third-order gratings with periods from 10.5 to 12.4microm . The second-harmonic signal spectra demonstrated narrowing owing to the finite bandwidth of the quasi-phase-matching grating. An average power of ~110 nW was obtained for the second harmonic by use of an average launched pump power of ?2.3mW .
Optics Letters | 2010
A.A. Lagatsky; X. Han; M. D. Serrano; Concepción Cascales; Carlos Zaldo; S. Calvez; Martin D. Dawson; J. A. Gupta; C.T.A. Brown; W. Sibbett
We report, for the first time to our knowledge, femtosecond-pulse operation of a Tm,Ho:NaY(WO(4))(2) laser at around 2060 nm. Transform-limited 191 fs pulses are produced with an average output power of 82 mW at a 144 MHz pulse repetition frequency. Maximum output power of up to 155 mW is generated with a corresponding pulse duration of 258 fs. An ion-implanted InGaAsSb quantum-well-based semiconductor saturable absorber mirror is used for passive mode-locking maintenance.