Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. V. Jeans is active.

Publication


Featured researches published by C. V. Jeans.


Clay Minerals | 2000

Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea basin

C. V. Jeans; David S. Wray; R. J. Merriman; M. J. Fisher

Abstract The nature and origin of authigenic clay minerals and silicate cements in the Jurassic and Cretaceous sediments of England and the North Sea are discussed in relation to penecontemporaneous volcanism in and around the North Sea Basin. Evidence, including new REE data, suggests that the authigenic clay minerals represent the argillization of volcanic ash under varying diagenetic conditions, and that volcanic ash is a likely source for at least the early silicate cements in many sandstones. The nature and origin of smectite-rich, glauconite-rich, berthierine-rich and kaolin-rich volcanogenic clay mineral deposits are discussed. Two patterns of volcanogenic clay minerals facies are described. Pattern A is related to ash argillization in the non-marine and marine environments. Pattern B is developed by the argillization of ash concentrated in the sand and silt facies belts in the seas bordering ash-covered islands and massifs. It is associated with regression/ transgression cycles which may be related to thermal doming and associated volcanism, including the submarine release of hydrothermal fluids rich in Fe. The apparent paucity of volcanogenic clay deposits in the Jurasssic and Early Cretaceous sediments of the North Sea is discussed.


Clay Minerals | 2006

Clay mineralogy of the Cretaceous strata of the British Isles

C. V. Jeans

Abstract The clay mineralogy of the Cretaceous strata of the British Isles is described and discussed within its lithostratigraphical and biostratigraphical framework using published and unpublished sources as well as 1400 new clay mineral analyses. The regional clay mineral variation is described systematically for the following strata: (1) Southern England - Purbeck Limestone Group (Berriasian/Ryazanian; Lulworth and Durlston formations), Wealden Group (Valanginian-Barremian/Aptian; Ashdown, Wadhurst Clay, Tunbridge Wells Sands, Grinstead Clay Member, Wealden Clay, Wessex and Vectis formations), Lower Greensand (Aptian-Lower Albian; Atherfield Clay, Hythe, Sandgate, Folkestone Sands, Ferruginous Sands, Woburn Sands and Faringdon Sponge Gravels formations), Selborne Group (Middle-Upper Albian; Gault Clay and Upper Greensand formations) and the Chalk Group (Cenomanian-Lower Maastrichtian). (2) Eastern England - Cromer Knoll Group (Ryazanian-Upper Albian; Speeton Clay, Spilsby Sandstone, Sandringham Sands, Claxby Ironstone, Tealby, Roach Ironstone, Dersingham, Carstone and Red Chalk (or Hunstanton Red Limestone) formations). (3) Scotland - Inner Hebrides Group (Cenomanian-Campanian; Morvern Greensand, Gribun Chalk, Coire Riabhach Phosphatic Hibernian Greensands formations). (4) Northern Ireland - Hibernian Greensands (Cenomanian-Santonian) and Ulster White Limestone formations (Santonian-Lower Maastrichtian). The stratigraphical patterns of clay mineral variation divide naturally into two types; firstly, the more complex pattern of the Lower Cretaceous strata and secondly, the simple pattern of the Upper Cretaceous. Clay mineral variations in the non-marine and marine Lower Cretaceous strata of England are best explained by the interplay of two main clay mineral assemblages between which all gradations occur. The assemblage which dominates the main clay formations consists of mica, kaolin and poorly defined mixed-layer smectite-mica-vermiculite minerals, and sometimes includes vermiculite and traces of chlorite. It is dominantly of detrital origin and detailed evidence indicates it is derived largely from the reworking of Mesozoic sediments although ultimately from weathered Palaeozoic sediments and metasediments. Although mainly of detrital origin, this assemblage contains a persistent component that formed coevally with the approximate depositional age of its host sediment. Whether this component is of soil origin or was neoformed in the sediment shortly after deposition is unclear. There is little firm evidence indicating the sources of this clay mineral detritus. However, in the strata of the Wealden Group of southern England, mineral trends suggest three sources; one of these was to the west (Cornubian Massif), another must have been the Anglo- Brabant landmass. In the Selborne Group (Middle-Upper Albian) and in the overlying Lower Chalk (Cenomanian) where this assemblage makes its last appearance in the Cretaceous of England, there is good evidence of easterly and south-easterly sources. The second main assemblage tends to be largely monominerallic, and usually dominated by smectite with or without small amounts of mica; less frequently, kaolin, berthierine or glauconite sensu lato is the sole or dominant component. It is considered to be of volcanogenic origin, derived from the argillization of volcanic ash under different conditions of deposition and diagenesis. The source of the ash in Berriasian-Aptian times seems to have been an extensive volcanic field in the southern part of the North Sea and in the Netherlands, whereas in the Albian (and extending into the Cenomanian) a westerly source dominated. The current controversy about the role of climate or pattern of volcanic activity controlling the clay mineral stratigraphy of the Lower Cretaceous is reviewed. In the lower part of the Upper Cretaceous strata of England, Scotland and Ireland, sand-grade glauconite is particularly abundant. Much of it represents the glauconitization of pene- contemporanous volcanic ash, possibly of basaltic origin, associated with continental breakup and the opening up of the Atlantic Ocean and the earliest stages in the development of the Hebridean Tertiary Igneous Province. The Upper Cretaceous Chalk facies of England and Ireland is dominated by a smectite-rich clay assemblage containing mica, and the various hypotheses for its origin (detrital, neoformation, volcanogenic) are reviewed in the light of available mineralogical, chemical and geological data.


Clay Minerals | 2006

Clay mineralogy of the Jurassic strata of the British Isles

C. V. Jeans

Abstract The nature and origin of the clay mineralogy of the Jurassic strata of the British Isles are described and discussed within their lithological and biostratigraphical framework using published and unpublished sources as well as 1800 new clay mineral analyses. Regional clay mineral variation is described systematically for the following formations or groups: England and Wales (i) Hettangian-Toarcian strata (Lias Group): Redcar Mudstone Fm.; Staithes Sandstone Fm.; Cleveland Ironstone Fm.; Whitby Mudstone Fm.; Scunthorpe Mudstone Fm.; Blue Lias Fm.; Charmouth Mudstone Fm.; Marlstone Rock Fm.; Dyrham Fm.; Beacon Limestone Fm.; Bridport Sand Fm. (ii) Aalenian-Bajocian (Inferior Oolite Group): Dogger Fm.; Saltwick Fm.; Eller Beck Fm.; Cloughton Fm.; Scarborough Fm.; Scalby Fm. (in part); Northampton Sand Fm.; Grantham Fm.; Lincolnshire Limestone Fm.; Rutland Fm. (in part); Inferior Oolite of southern England. (iii) Bathonian (Great Oolite Group): Scalby Fm. (in part); Rutland Fm. (in part); Blisworth Limestone Fm.; Great Oolite Group of southern England; Forest Marble Fm.; Cornbrash Fm. (in part). (iv) Callovian-Oxfordian: Cornbrash Fm. (in part); Kellaways Fm.; Oxford Clay Fm.; Corallian Beds and West Walton Beds; Ampthill Clay Fm. (v) Kimmeridgian-Tithonian: Kimmeridge Clay Fm.; Portland Sandstone Fm.; Portland Limestone Fm.; Lulworth Fm.; Spilsby Sandstone Fm. (in part). Scotland (vi) Hettangian-Toarcian: Broadfoot Beds, Dunrobin Bay Fm. Aalenian-Portlandian: Great Estuarine Group (Dunkulm, Kilmaluag and Studiburgh Fm.s); Staffin Shale Fm.; Brora Coal Fm.; Brora Argillaceous Fm.; Balintore Fm.; Helmsdale Boulder Beds (Kimmeridge Clay Fm.). Dominating the Jurassic successions are the great marine mudstone formations - the Lias Group, Oxford Clay, Ampthill Clay and Kimmeridge Clay. These are typically characterized by a detrital clay mineral assemblage of mica, kaolin and poorly defined mixed-layer smectite-mica-vermiculite minerals with traces of chlorite. Detailed evidence suggests that this assemblage is derived ultimately from weathered Palaeozoic sediments and metasediments either directly or by being recycled from earlier Mesozoic sediments. A potassium-bearing clay is a persistent component and formed at approximately the same time as the deposition of the host sediment, either in coeval soils or during very early diagenesis. At three periods during the deposition of the Jurassic (Bajocian-Bathonian, Oxfordian and late Kimmeridgian-Tithonian), the detrital clay assemblage was completely or partially replaced by authigenic clay mineral assemblages rich in kaolin, berthierine, glauconite or smectite minerals. Associated with these changes are major changes in the lithofacies, with the incoming of non-marine and proximal marine strata. The authigenic clay assemblages rich in kaolin and berthierine are generally restricted to the non-marine and very proximal marine beds, those rich in glauconite or smectite are typical of the marine lithofacies. Clay mineral assemblages containing vermiculite and mixed-layer vermiculite-chlorite sometimes occur in the non-marine and proximal marine facies. The causes of these major changes in lithofacies and clay mineralogy are discussed, and present evidence favours an important volcanogenic influence and not climatic control. It is suggested that the Bajocian-Bathonian, Oxfordian and Late Kimmeridgian-Tithonian were periods of enhanced volcanic activity, with centres probably located in the North Sea and linked to regional tectonic changes which caused major modifications of the palaeogeography of the British Isles. The most important of these changes was the development of the central North Sea Rift Dome during the Bajocian and Bathonian. Volcanic ash was widespread in both the non-marine and marine environments and its argillization under different conditions provided the wide range of authigenic clay mineral assemblages. Metre-scale clay mineral cyclicity is widespread in most of the Jurassic mudstone formations that have been examined in sufficient detail. The cyclicity is defined by systematic variations in the mica/ collapsible minerals (mixed-layer smectite-mica-vermiculite) ratio. This variation is unrelated to changes in lithology and its possible origins are discussed in detail using data from the Kimmeridge Clay provided by Reading Universitys contribution to the Rapid Global Geological Events (RGGE) Project.


Clay Minerals | 1997

Clay- and zeolite-bearing Triassic sediments at Kaka Point, New Zealand; evidence of microbially influenced mineral formation from earliest diagenesis into the lowest grade of metamorphism

C. V. Jeans; Anthony E. Fallick; M. J. Fisher; R. J. Merriman; R. M. Corfield; B. Manighetti

Abstract The distribution, mineralogy, petrology and bulk and stable isotope chemistry of altered volcanic ash beds in the marine sediments of Mid-Triassic age (Etalian) at Kaka Point, New Zealand, are described and related to lithofacies and the geological processes controlling their development. Three varieties of altered ash occur in the Kaka Point sediments - porcellanite, claystone (bentonite) and albite-rich. Porcellanites are quartz-rich and may contain analcime and heulandite: they are restricted mainly to the on-shore facies. Claystones are rich in smectitic clay minerals and occur in both the on-shore and off-shore facies. They often contain diagenetic nodules of analcime, quartz, apatite and carbonates. The authigenic carbonates of the on-shore facies are variable in composition (sideritic, rhodochrositic, calcitic), whereas in the off-shore facies they consist only of calcite. The albite-rich lithology is very rare and is known only from the off-shore facies. The development of the porcellanite and albite-rich lithologies was restricted to slowly deposited, relatively coarse-grained ash sediments in which extensive interchange took place between the sediments pore-waters and ambient seawater, resulting in enhanced microbial activity and high pH throughout the pore-waters of the suboxic zone beneath the water-sediment interface. The high pH increased the rate of volcanic ash hydrolysis and provided the conditions necessary for the precipitation of zeolite, feldspar and quartz. The development of smectitic claystones was associated with more rapid deposition and limited interchange between the pore-waters of the parent ash and ambient seawater. The pore-water alkalinity was generally lower and enhanced microbial activity and high pHs were restricted to patches of sediment at which quartz, analcime, apatite and carbonates formed diagenetic nodules. Modelling of the stable isotopes of the smectitic clays (δ18O, δD) and diagenetic carbonates (δ18O, δ13C) suggest that: (1) ash argillization in the on-shore facies took place in brackish water (~25% meteoric water) at an average temperature of ~50°C and in the off-shore facies in marine pore-waters (~10% meteoric waters) at ~40°C and (2) diagenetic carbonate precipitation in the near-shore facies took place at ~30°C and in the off-shore facies at 60-80°C. The pattern of ash alteration in the marine Triassic sediments at Kaka Point is considered to represent an early stage in the development of the zeolite pattern associated with the classic area of zeolite facies metamorphism in the Taringatura and Hokonui Hills.


Clay Minerals | 2006

Clay mineralogy of the Permo-Triassic strata of the British Isles: onshore and offshore

C. V. Jeans

Abstract The regional distribution, mineralogy, petrology and chemistry of the detrital and authigenic clay minerals associated with the Permo-Triassic strata (excluding the Rotliegend: see Ziegler, 2006; this volume), of the onshore and offshore regions of the British Isles are reviewed within their stratigraphical framework. The origin of these clay minerals is discussed in relation to current hypotheses on the developments of the Mg-rich clay mineral assemblages associated with the evaporitic red-bed Germanic facies of Europe and North Africa. Composite clay mineral successions are described for seven regions of the British Isles - the Western Approaches Trough; SW England; South Midlands; Central Midlands; the Cheshire Basin; NE Yorkshire; and the Central North Sea. The detrital clay mineral assemblages of the Early Permian strata are variable, consisting of mica, smectite, smectite-mica, kaolin and chlorite, whereas those of the Late Permian and the Trias are dominated by mica, usually in association with minor Fe-rich chlorite. The detrital mica consists of a mixture of penecontemporaneous ferric mica, probably of pedogenic origin, and recycled Pre-Permian mica. In the youngest Triassic strata (Rhaetian), the detrital clay assemblages may contain appreciable amounts of poorly defined collapsible minerals (irregular mixed-layer smectite-mica-vermiculite) and kaolin, giving them a Jurassic aspect. There are two types of authigenic clay mineral assemblages. Kaolin may occur as a late-stage diagenetic mineral where the original Permo-Triassic porewaters of the sediment have been replaced by meteoritic waters. A suite of early-stage diagenetic clay minerals, many of them Mg-rich, are linked to the evaporitic red-bed facies - these include sepiolite, palygorskite, smectite, irregular mixed- layer smectite-mica and smectite-chlorite, corrensite, chlorite and glauconite (sensu lato). The sandstones and mudstones of the onshore regions of the British Isles display little or no difference in their detrital and authigenic clay mineral assemblages. In contrast, the sandstones of the offshore regions (North Sea) show major differences with the presence of extensive chloritic cements containing Mg-rich and Al-rich chlorite, irregular mixed-layer serpentine-chlorite, and mica.


Clay Minerals | 2001

Age, origin and climatic signal of English Mesozoic clays based on K/Ar signatures

C. V. Jeans; J. G. Mitchell; M. J. Fisher; David S. Wray; Ian Robert Hall

Abstract The K/Ar characteristics of 53 clay assemblages (Triassic-Cretaceous), representing the detrital, volcanogenic and arid-facies clay mineral associations, are interpreted in relation to their mineralogy, chronostratic age and geological origins. The K-bearing mineral components of the 1-2 μm, 0.2-1 μm and <0.2 μm fractions of each clay assemblage together display one of two characteristic patterns of K2O and 40Ar values (the K/Ar signature of the assemblage) on a 40Ar/K2O correlation diagram. Interpretation of the K/Ar signatures indicates that: (1) all of these clay assemblages are apparently unaffected by burial diagenetic illitization; (2) the Jurassic and Cretaceous detrital clay assemblages are derived from the reworking of weathered Caledonian metasediments (420-500 Ma) and weathered kaolin-bearing sediments of Upper Devonian/ Carboniferous age; and (3) the role played by palaeoclimate in developing the pattern of clay minerals in the Mesozoic sediments of England is much less significant than previously believed.


Clay Minerals | 2005

Origin of the clay mineral assemblages in the Germanic facies of the English Trias: application of the spore colour index method

C. V. Jeans; M. J. Fisher; R. J. Merriman

Abstract The origin of the regional and stratigraphical variation in the Triassic authigenic clay assemblages of England is discussed in relation to new estimates of the palaeotemperatures experienced by their host sediments and a preliminary study by transmission electron microscopy of their microtextural features. Spore colour index measurements, based on the spore type Deltoidospora s.l. occurring in the sediments (Penarth Group) at the very top of the Triassic sequence, give estimated palaeotemperatures ranging from 60-74°C (south Devon) to 89-97°C (northeast Yorkshire). Calculated palaeotemperatures, based on a gradient of 25°C/km, for the main zone of authigenic clay minerals range from 63-77°C to 89-97°C for the top to 71-85°C to 94-104°C for the base. Irregular mixed-layer smectite-chlorite, corrensite and Mg-rich chlorite are associated with calculated palaeotemperatures of 66-86°C, 66-104°C and 75-104°C respectively. The suggestion that elsewhere in the UK corrensite and Mg-rich chlorite were formed at temperatures in excess of 100°C finds no support. Geothermal gradients would have to have been of the order of at least 100-300°C/km to obtain these temperatures within the Triassic sediments; such values are associated typically with high-level magmatic intrusions or geothermal systems of which there is no geological evidence. The balance of evidence suggests that the Triassic authigenic clay assemblages formed by neoformation during the early stages of sediment diagenesis under the influence of variation in the alkalinity of the depositional environments.


Clay Minerals | 2014

Clay mineral-grain size-calcite cement relationships in the Upper Cretaceous Chalk, UK: a preliminary investigation

C. V. Jeans; Nicholas J. Tosca; Xiufang Hu; S. Boreham

Abstract The idea is tested that the evolution of the Chalk’s clay mineral assemblage during diagenesis can be deduced by examining the relationships between its clay mineralogy, particle size distribution pattern, and the timing and trace element chemistry of the calcite cement. The preliminary results from five different examples of cementation developed at different stages of diagenesis in chalks with smectite-dominated clay assemblages suggest that this is a promising line of investigation. Soft chalks with minor amount of anoxic series calcite cement poor in Mg, Fe and Mn are associated with neoformed trioctahedral smectite and/or dioctahedral nontronite and talc. Hard ground chalk with extensive anoxic series calcite cement enriched in Mg and relatively high Fe, Mn and Sr are associated with neoformed glauconite sensu lato, berthierine and dioctahedral smectite, possibly enriched in Fe. The chalk associated with large ammonites shows extensive suboxic series calcite cement enriched in Mg, Mn and Fe that show no obvious correlation with its clay mineralogy. Nodular chalks with patchy suboxic series calcite cement enriched in Fe are associated with neoformed dioctahedral smectite, possibly enriched in Al, and berthierine. Regionally hardened chalk with extensive suboxic calcite cement and relatively high trace element contents contain pressure dissolution seams enriched in kaolin and berthierine. Laser-based particle-size distribution patterns suggest that each type of lithification has a typical complex clay mineral population, indicating that subtleties in mineralogy are not being identified and that there could be some control on the size and shape of the clay crystals by the different types of cementation.


Clay Minerals | 2014

Chemostratigraphy and provenance of clays and other non-carbonate minerals in chalks of Campanian age (Upper Cretaceous) from Sussex, southern England

David S. Wray; C. V. Jeans

Abstract Geochemical analysis of acid-insoluble residues derived from white chalks and marl seams of Campanian age from Sussex, UK, has been undertaken. All display a broadly similar <2 μm mineralogical composition consisting of smectite or smectite-rich illite-smectite with subordinate illite and minor amounts of talc. Plots of K2O/Al2O3 and TiO2/Al2O3 indicate that most marl seams have an acid-insoluble residue composition which is slightly different to that of the over- and underlying white chalk, implying that marl seams are primary sedimentary features not formed through white chalk dissolution. On the basis of a negative Eu anomaly and trace element geochemistry one marl seam, the Old Nore Marl, is considered to be volcanically derived and best classified as a bentonite; it is considered to correlate with the bentonite M1 of the north German succession.


Clay Minerals | 2014

A novel approach to the study of the development of the Chalk’s smectite assemblage

Xiufang Hu; D. Long; C. V. Jeans

Abstract Detrital, volcanic and diagenetic origins have been used to explain the smectite clay assemblage that characterizes the Upper Cretaceous Chalk of Europe. To further the understanding of how clays of different origins may have converged to this characteristic clay mineral assemblage a new approach is put forward for their investigation. This is based upon (1) the correlation that exists between the trace element and stable isotope geochemistry of the calcite cements preserved within Chalk brachiopods and the various diagenetic phases of early lithification and cementation recognized in the Chalk, and (2) an understanding of the process of late diagenetic cementation that has caused regional differences in the hardness of the Chalk. It is suggested that each phase of lithification and associated calcite cementation may preserve the different clay assemblages at various stages in their convergence to the characteristic Chalk smectite assemblage.

Collaboration


Dive into the C. V. Jeans's collaboration.

Top Co-Authors

Avatar

R. J. Merriman

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiufang Hu

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. J. Bland

British Geological Survey

View shared research outputs
Top Co-Authors

Avatar

D. Long

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

M. A. Hall

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge