C.W. Beukes
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C.W. Beukes.
PLOS ONE | 2013
C.W. Beukes; Stephanus N. Venter; Ian J. Law; Francina L. Phalane; Emma Theodora Steenkamp
The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region.
Systematic and Applied Microbiology | 2015
Emma Theodora Steenkamp; Elritha Van Zyl; C.W. Beukes; Juanita R. Avontuur; Wai Yin Chan; Marike Palmer; Lunghile S. Mthombeni; Francina L. Phalane; T. Karabo Sereme; Stephanus N. Venter
Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolates genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.
Frontiers in Microbiology | 2017
C.W. Beukes; Marike Palmer; Puseletso Manyaka; Wai Y. Chan; Juanita R. Avontuur; Elritha Van Zyl; Marcel Huntemann; Alicia Clum; Manoj Pillay; Krishnaveni Palaniappan; Neha Varghese; Natalia Mikhailova; Dimitrios Stamatis; T. B. K. Reddy; Chris Daum; Nicole Shapiro; Victor Markowitz; Natalia Ivanova; Nikos C. Kyrpides; Tanja Woyke; Jochen Blom; William B. Whitman; Stephanus N. Venter; Emma Theodora Steenkamp
Although the taxonomy of Burkholderia has been extensively scrutinized, significant uncertainty remains regarding the generic boundaries and composition of this large and heterogeneous taxon. Here we used the amino acid and nucleotide sequences of 106 conserved proteins from 92 species to infer robust maximum likelihood phylogenies with which to investigate the generic structure of Burkholderia sensu lato. These data unambiguously supported five distinct lineages, of which four correspond to Burkholderia sensu stricto and the newly introduced genera Paraburkholderia, Caballeronia, and Robbsia. The fifth lineage was represented by P. rhizoxinica. Based on these findings, we propose 13 new combinations for those species previously described as members of Burkholderia but that form part of Caballeronia. These findings also suggest revision of the taxonomic status of P. rhizoxinica as it is does not form part of any of the genera currently recognized in Burkholderia sensu lato. From a phylogenetic point of view, Burkholderia sensu stricto has a sister relationship with the Caballeronia+Paraburkholderia clade. Also, the lineages represented by P. rhizoxinica and R. andropogonis, respectively, emerged prior to the radiation of the Burkholderia sensu stricto+Caballeronia+Paraburkholderia clade. Our findings therefore constitute a solid framework, not only for supporting current and future taxonomic decisions, but also for studying the evolution of this assemblage of medically, industrially and agriculturally important species.
Molecular Phylogenetics and Evolution | 2016
C.W. Beukes; Tomasz Stępkowski; Stephanus N. Venter; Tomasz Cłapa; Francina L. Phalane; Marianne M. le Roux; Emma Theodora Steenkamp
The genus Bradyrhizobium contains predominantly nitrogen-fixing legume symbionts. Phylogenetic analysis of the genes responsible for their symbiotic abilities (i.e., those encoded on the nodulation [nod] and nitrogen-fixation [nif] loci) has facilitated the development of an extensive phylogeographic framework for the genus. This framework however contains only a few nodulating isolates from Africa. Here we focused on nodulating Bradyrhizobium isolates associated with native southern African legumes in the tribes Genisteae and Crotalarieae found along the Great Escarpment in the Mpumalanga Province of South Africa. The aims of this study were to: (1) obtain rhizobial isolates from legumes in the Genisteae and Crotalarieae; (2) verify their nodulation ability; (3) characterize them to species level based on phylogenetic analyses of several protein coding gene regions (atpD, dnaK, glnII, recA, rpoB and gyrB) and (4) determine their placement in the phylogeographic framework inferred from the sequences of the symbiotic loci nodA and nifD. Twenty of the 21 Bradyrhizobium isolates belonged to six novel species, while one was conspecific with the recently described B. arachidis. Among these isolates, the nodA phylogeny revealed several new clades, with 18 of our isolates found in Clades XIV and XV, and only three forming part of the cosmopolitan Clade III. These strains formed predominantly the same groups in the nifD phylogeny although with slight differences; indicating that both vertical and horizontal inheritance of the symbiotic loci occurred. These findings suggest that the largely unexplored diversity of indigenous African rhizobia are characterized by unique ancestries that might mirror the distribution of their hosts and the environmental factors driving their evolution.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Stephanus N. Venter; Marike Palmer; C.W. Beukes; Wai Yin Chan; Giyoon Shin; Elritha Van Zyl; Tarren Seale; Teresa A. Coutinho; Emma Theodora Steenkamp
Bacterial species are commonly defined by applying a set of predetermined criteria, including DNA–DNA hybridization values, 16S rRNA gene sequence similarity, phenotypic data as well as genome-based criteria such as average nucleotide identity or digital DNA-DNA hybridization. These criteria mostly allow for the delimitation of taxa that resemble typical bacterial species. Their application is often complicated when the objective is to delineate new species that are characterized by significant population-level diversity or recent speciation. However, we believe that these complexities and limitations can be easily circumvented by recognizing that bacterial species represent unique and exclusive assemblages of diversity. Within such a framework, methods that account for the population processes involved in species evolution are used to infer species boundaries. A method such as genealogical concordance analysis is well suited to delineate a putative species. The existence of the new taxon is then interrogated using an array of traditional and genome-based characters. By making use of taxa in the genera Pantoea, Paraburkholderia and Escherichia we demonstrate in a step-wise process how genealogical concordance can be used to delimit a bacterial species. Genetic, phenotypic and biological criteria were used to provide independent lines of evidence for the existence of that taxon. Our six-step approach to species recognition is straightforward and applicable to bacterial species especially in the post-genomic era, with increased availability of whole genome sequences. In fact, our results indicated that a combined genome-based comparative and evolutionary approach would be the preferred alternative for delineating coherent bacterial taxa.
Genes | 2018
Paulina Estrada-de los Santos; Marike Palmer; Belén Chávez-Ramírez; C.W. Beukes; Emma Theodora Steenkamp; Leah Briscoe; Noor Khan; Marta Maluk; Marcel Lafos; Ethan Humm; Monique Arrabit; Matthew B. Crook; Eduardo Gross; Marcelo F. Simon; Fábio dos Reis Junior; William B. Whitman; Nicole Shapiro; Philip S. Poole; Ann M. Hirsch; Stephanus N. Venter; Euan K. James
Burkholderia sensu lato is a large and complex group, containing pathogenic, phytopathogenic, symbiotic and non-symbiotic strains from a very wide range of environmental (soil, water, plants, fungi) and clinical (animal, human) habitats. Its taxonomy has been evaluated several times through the analysis of 16S rRNA sequences, concantenated 4–7 housekeeping gene sequences, and lately by genome sequences. Currently, the division of this group into Burkholderia, Caballeronia, Paraburkholderia, and Robbsia is strongly supported by genome analysis. These new genera broadly correspond to the various habitats/lifestyles of Burkholderia s.l., e.g., all the plant beneficial and environmental (PBE) strains are included in Paraburkholderia (which also includes all the N2-fixing legume symbionts) and Caballeronia, while most of the human and animal pathogens are retained in Burkholderia sensu stricto. However, none of these genera can accommodate two important groups of species. One of these includes the closely related Paraburkholderia rhizoxinica and Paraburkholderia endofungorum, which are both symbionts of the fungal phytopathogen Rhizopus microsporus. The second group comprises the Mimosa-nodulating bacterium Paraburkholderia symbiotica, the phytopathogen Paraburkholderia caryophylli, and the soil bacteria Burkholderia dabaoshanensis and Paraburkholderia soli. In order to clarify their positions within Burkholderia sensu lato, a phylogenomic approach based on a maximum likelihood analysis of conserved genes from more than 100 Burkholderia sensu lato species was carried out. Additionally, the average nucleotide identity (ANI) and amino acid identity (AAI) were calculated. The data strongly supported the existence of two distinct and unique clades, which in fact sustain the description of two novel genera Mycetohabitans gen. nov. and Trinickia gen. nov. The newly proposed combinations are Mycetohabitans endofungorum comb. nov., Mycetohabitans rhizoxinica comb. nov., Trinickia caryophylli comb. nov., Trinickia dabaoshanensis comb. nov., Trinickia soli comb. nov., and Trinickia symbiotica comb. nov. Given that the division between the genera that comprise Burkholderia s.l. in terms of their lifestyles is often complex, differential characteristics of the genomes of these new combinations were investigated. In addition, two important lifestyle-determining traits—diazotrophy and/or symbiotic nodulation, and pathogenesis—were analyzed in depth i.e., the phylogenetic positions of nitrogen fixation and nodulation genes in Trinickia via-à-vis other Burkholderiaceae were determined, and the possibility of pathogenesis in Mycetohabitans and Trinickia was tested by performing infection experiments on plants and the nematode Caenorhabditis elegans. It is concluded that (1) T. symbiotica nif and nod genes fit within the wider Mimosa-nodulating Burkholderiaceae but appear in separate clades and that T. caryophylli nif genes are basal to the free-living Burkholderia s.l. strains, while with regard to pathogenesis (2) none of the Mycetohabitans and Trinickia strains tested are likely to be pathogenic, except for the known phytopathogen T. caryophylli.
Frontiers in Microbiology | 2018
C.W. Beukes; Marike Palmer; Puseletso Manyaka; Wai Y. Chan; Juanita R. Avontuur; Elritha Van Zyl; Marcel Huntemann; Alicia Clum; Manoj Pillay; Krishnaveni Palaniappan; Neha Varghese; Natalia Mikhailova; Dimitrios Stamatis; T. B. K. Reddy; Chris Daum; Nicole Shapiro; Victor Markowitz; Natalia V. Ivanova; Nikos C. Kyrpides; Tanja Woyke; Jochen Blom; William B. Whitman; Stephanus N. Venter; Emma Theodora Steenkamp
[This corrects the article on p. 1154 in vol. 8, PMID: 28694797.].
South African Journal of Science | 2012
Brenda D. Wingfield; Emma Theodora Steenkamp; Quentin C. Santana; Martin Petrus Albertus Coetzee; Stefan Bam; Irene Barnes; C.W. Beukes; Wai Yin Chan; Lieschen De Vos; Gerda Fourie; Melanie Friend; Thomas R. Gordon; Darryl A. Herron; Carson Holt; Ian Korf; Marija Kvas; Simon H. Martin; X. Osmond Mlonyeni; Kershney Naidoo; Mmatshepho M. Phasha; Alisa Postma; Oleg N. Reva; Heidi Roos; Melissa Simpson; Stephanie Slinski; Bernard Slippers; Rene Sutherland; Nicolaas Albertus Van der Merwe; Magriet A. van der Nest; Stephanus N. Venter
South African Journal of Science | 2012
Brenda D. Wingfield; Emma Theodora Steenkamp; Quentin C. Santana; Martin Petrus Albertus Coetzee; Stefan Bam; Irene Barnes; C.W. Beukes; Wai Yin Chan; Lieschen De Vos; Gerda Fourie; Melanie Friend; Darryl A. Herron; Marija Kvas; Simon H. Martin; X. Osmond Mlonyeni; Kershney Naidoo; Mmatshepho M. Phasha; Alisa Postma; Oleg N. Reva; Heidi Roos; Melissa Simpson; Bernard Slippers; Rene Sutherland; Nicolaas Albertus Van der Merwe; Magriet A. van der Nest; Stephanus N. Venter; Pieter M. Wilken; Renate Zipfel; Michael J. Wingfield; Thomas R. Gordon
South African Journal of Botany | 2018
C.W. Beukes; F.S. Boshoff; Francina L. Phalane; Stephanus N. Venter; Emma Theodora Steenkamp