Wai Yin Chan
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wai Yin Chan.
Journal of Bacteriology | 2010
Pieter De Maayer; Wai Yin Chan; Stephanus N. Venter; Ian K. Toth; Paul R. J. Birch; Fourie Joubert; Teresa A. Coutinho
Pantoea ananatis is a Gram-negative plant pathogen that causes disease on a broad range of host plants, including pineapple, maize, rice, onion, melons, and Eucalyptus, and has been implicated in several cases of human disease. Here, we report the genome sequence of P. ananatis LMG20103 isolated from diseased Eucalyptus in South Africa.
BMC Genomics | 2014
Pieter De Maayer; Wai Yin Chan; Enrico Rubagotti; Stephanus N. Venter; Ian K. Toth; Paul R. J. Birch; Teresa A. Coutinho
BackgroundPantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms.ResultsThe pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors.ConclusionsP. ananatis has an ‘open’ pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.
Journal of Bacteriology | 2012
Pieter De Maayer; Wai Yin Chan; Fabio Rezzonico; Andreas Bühlmann; Stephanus N. Venter; Jochen Blom; Alexander Goesmann; Jürg E. Frey; Theo H. M. Smits; Brion Duffy; Teresa A. Coutinho
The enterobacterium Pantoea ananatis is an ecologically versatile species. It has been found in the environment, as plant epiphyte and endophyte, as an emerging phytopathogen, and as a presumptive, opportunistic human pathogen. Here, we report the complete genome sequence of P. ananatis LMG 5342, isolated from a human wound.
Systematic and Applied Microbiology | 2015
Emma Theodora Steenkamp; Elritha Van Zyl; C.W. Beukes; Juanita R. Avontuur; Wai Yin Chan; Marike Palmer; Lunghile S. Mthombeni; Francina L. Phalane; T. Karabo Sereme; Stephanus N. Venter
Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolates genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Marike Palmer; Emma Theodora Steenkamp; Martin Petrus Albertus Coetzee; Wai Yin Chan; Elritha Van Zyl; Pieter De Maayer; Teresa A. Coutinho; Jochen Blom; Theo H. M. Smits; Brion Duffy; Stephanus N. Venter
Investigation of the evolutionary relationships between related bacterial species and genera with a variety of lifestyles have gained popularity in recent years. For analysing the evolution of specific traits, however, a robust phylogeny is essential. In this study we examined the evolutionary relationships among the closely related genera Erwinia, Tatumella and Pantoea, and also attempted to resolve the species relationships within Pantoea. To accomplish this, we used the whole genome sequence data for 35 different strains belonging to these three genera, as well as nine outgroup taxa. Multigene datasets consisting of the 1039 genes shared by these 44 strains were then generated and subjected to maximum likelihood phylogenetic analyses, after which the results were compared to those using conventional multi-locus sequence analysis (MLSA) and ribosomal MLSA (rMLSA) approaches. The robustness of the respective phylogenies was then explored by considering the factors typically responsible for destabilizing phylogenetic trees. We found that the nucleotide datasets employed in the MLSA, rMLSA and 1039-gene datasets contained significant levels of homoplasy, substitution saturation and differential codon usage, all of which likely gave rise to the observed lineage specific rate heterogeneity. The effects of these factors were much less pronounced in the amino acid dataset for the 1039 genes, which allowed reconstruction of a fully supported and resolved phylogeny. The robustness of this amino acid tree was also supported by different subsets of the 1039 genes. In contrast to the smaller datasets (MLSA and rMLSA), the 1039 amino acid tree was also not as sensitive to long-branch attraction. The robust and well-supported evolutionary hypothesis for the three genera, which confidently resolved their various inter- and intrageneric relationships, represents a valuable resource for future studies. It will form the basis for studies aiming to understand the forces driving the divergence and maintenance of lineages, species and biological traits in this important group of bacteria.
Genome Announcements | 2014
Tania Weller-Stuart; Wai Yin Chan; Teresa A. Coutinho; Stephanus N. Venter; Theo H. M. Smits; Brion Duffy; Teresa Goszczynska; Don A. Cowan; Pieter De Maayer
ABSTRACT Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize.
Gene | 2016
Liberata Mwita; Wai Yin Chan; Theresa Pretorius; Sylvester Leonard Lyantagaye; Svitlana V. Lapa; Lilia V. Avdeeva; Oleg N. Reva
Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.
Genome Announcements | 2013
Wai Yin Chan; Kristin Dietel; Svitlana V. Lapa; Lilija V. Avdeeva; Rainer Borriss; Oleg N. Reva
ABSTRACT Bacillus atrophaeus UCMB-5137 shows an extraordinary activity in root colonization and plant and crop protection. Its draft genome sequence comprises 21 contigs of 4.11 Mb, harboring 4,167 coding sequences (CDS). The genome carries several genes encoding antimicrobial lipopeptides and polyketides. Multiple horizontally acquired genes of possible importance for plant colonization were also found.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2017
Stephanus N. Venter; Marike Palmer; C.W. Beukes; Wai Yin Chan; Giyoon Shin; Elritha Van Zyl; Tarren Seale; Teresa A. Coutinho; Emma Theodora Steenkamp
Bacterial species are commonly defined by applying a set of predetermined criteria, including DNA–DNA hybridization values, 16S rRNA gene sequence similarity, phenotypic data as well as genome-based criteria such as average nucleotide identity or digital DNA-DNA hybridization. These criteria mostly allow for the delimitation of taxa that resemble typical bacterial species. Their application is often complicated when the objective is to delineate new species that are characterized by significant population-level diversity or recent speciation. However, we believe that these complexities and limitations can be easily circumvented by recognizing that bacterial species represent unique and exclusive assemblages of diversity. Within such a framework, methods that account for the population processes involved in species evolution are used to infer species boundaries. A method such as genealogical concordance analysis is well suited to delineate a putative species. The existence of the new taxon is then interrogated using an array of traditional and genome-based characters. By making use of taxa in the genera Pantoea, Paraburkholderia and Escherichia we demonstrate in a step-wise process how genealogical concordance can be used to delimit a bacterial species. Genetic, phenotypic and biological criteria were used to provide independent lines of evidence for the existence of that taxon. Our six-step approach to species recognition is straightforward and applicable to bacterial species especially in the post-genomic era, with increased availability of whole genome sequences. In fact, our results indicated that a combined genome-based comparative and evolutionary approach would be the preferred alternative for delineating coherent bacterial taxa.
Genome Announcements | 2013
Wouter le Roux; Wai Yin Chan; Pieter De Maayer; Stephanus N. Venter
ABSTRACT Vibrio cholerae, a Gram-negative pathogen autochthonous to the aquatic environment, is the causative agent of cholera. Here, we report the complete genome sequence of V. cholerae G4222, a clinical isolate from South Africa.