Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where C. Wolverton is active.

Publication


Featured researches published by C. Wolverton.


Nature | 2014

Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals

Li-Dong Zhao; Shih Han Lo; Yongsheng Zhang; Hui Sun; Gangjian Tan; Ctirad Uher; C. Wolverton; Vinayak P. Dravid; Mercouri G. Kanatzidis

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 ± 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity (0.23 ± 0.03 W m−1 K−1 at 973 K) in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.


Science | 2016

Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe

Li-Dong Zhao; Gangjian Tan; Shiqiang Hao; Jiaqing He; Yanling Pei; Hang Chi; Heng Wang; Shengkai Gong; Huibin Xu; Vinayak P. Dravid; Ctirad Uher; G. Jeffrey Snyder; C. Wolverton; Mercouri G. Kanatzidis

Heat conversion gets a power boost Thermoelectric materials convert waste heat into electricity, but often achieve high conversion efficiencies only at high temperatures. Zhao et al. tackle this problem by introducing small amounts of sodium to the thermoelectric SnSe (see the Perspective by Behnia). This boosts the power factor, allowing the material to generate more energy while maintaining good conversion efficiency. The effect holds across a wide temperature range, which is attractive for developing new applications. Science, this issue p. 141; see also p. 124 A thermoelectric derived by sodium doping of tin selenide has a high power factor and conversion efficiency over a wide temperature range. [Also see Perspective by Behnia] Thermoelectric technology, harvesting electric power directly from heat, is a promising environmentally friendly means of energy savings and power generation. The thermoelectric efficiency is determined by the device dimensionless figure of merit ZTdev, and optimizing this efficiency requires maximizing ZT values over a broad temperature range. Here, we report a record high ZTdev ∼1.34, with ZT ranging from 0.7 to 2.0 at 300 to 773 kelvin, realized in hole-doped tin selenide (SnSe) crystals. The exceptional performance arises from the ultrahigh power factor, which comes from a high electrical conductivity and a strongly enhanced Seebeck coefficient enabled by the contribution of multiple electronic valence bands present in SnSe. SnSe is a robust thermoelectric candidate for energy conversion applications in the low and moderate temperature range.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gravity-regulated differential auxin transport from columella to lateral root cap cells

Iris Ottenschläger; Patricia Wolff; C. Wolverton; Rishikesh P. Bhalerao; Göran Sandberg; Hideo Ishikawa; Michael J. Evans; Klaus Palme

Gravity-induced root curvature has long been considered to be regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients, and the transport mechanisms involved, remain to be identified. Here, we describe a GFP-based auxin biosensor to monitor auxin during Arabidopsis root gravitropism at cellular resolution. We identify elevated auxin levels at the root apex in columella cells, the site of gravity perception, and an asymmetric auxin flux from these cells to the lateral root cap (LRC) and toward the elongation zone after gravistimulation. We differentiate between an efflux-dependent lateral auxin transport from columella to LRC cells, and an efflux- and influx-dependent basipetal transport from the LRC to the elongation zone. We further demonstrate that endogenous gravitropic auxin gradients develop even in the presence of an exogenous source of auxin. Live-cell auxin imaging provides unprecedented insights into gravity-regulated auxin flux at cellular resolution, and strongly suggests that this flux is a prerequisite for root gravitropism.


Acta Materialia | 2001

Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys

C. Wolverton

Abstract We demonstrate how first-principles total energy calculations may be used to elucidate both the crystal structures and formation enthalpies of complex precipitates in multicomponent Al alloys. For the precipitates, S (Al–Cu–Mg), η ′ (Al–Zn–Mg), and Q (Al–Cu–Mg–Si), energetics were computed for each of the models of the crystal structures available in the literature allowing a critical assessment of the validity of the models. In all three systems, energetics were also calculated for solid solution phases as well as other key phases (e.g., equilibrium phases, GP zones) in each precipitation sequence. For both the S and η ′ phases, we find that recently proposed structures (based on electron microscopy) produce unreasonably high energies, and thus we suggest that these models should be re-evaluated. However, for all three precipitates, we find that structures based on X-ray diffraction refinements provide both reasonable energetics and structural parameters, and therefore the first-principles results lend support to these structural refinements. Further, we predict energy-lowering site occupations and stoichiometries of the precipitate phases, where experimental information is incomplete. This work suggests that first-principles total energy calculations can be used in the future as a complementary technique with diffraction or microscopy for studying precipitate structures and stabilities.


Journal of the American Chemical Society | 2009

First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System

V. Ozolins; Eric H. Majzoub; C. Wolverton

Introduction of economically viable hydrogen cars is hindered by the need to store large amounts of hydrogen. Metal borohydrides [LiBH(4), Mg(BH(4))(2), Ca(BH(4))(2)] are attractive candidates for onboard storage because they contain high densities of hydrogen by weight and by volume. Using a set of recently developed theoretical first-principles methods, we predict currently unknown crystal structures and hydrogen storage reactions in the Li-Mg-Ca-B-H system. Hydrogen release from LiBH(4) and Mg(BH(4))(2) is predicted to proceed via intermediate Li(2)B(12)H(12) and MgB(12)H(12) phases, while for Ca borohydride two competing reaction pathways (into CaB(6) and CaH(2), and into CaB(12)H(12) and CaH(2)) are found to have nearly equal free energies. We predict two new hydrogen storage reactions that are some of the most attractive among the presently known ones. They combine high gravimetric densities (8.4 and 7.7 wt % H(2)) with low enthalpies [approximately 25 kJ/(mol H(2))] and are thermodynamically reversible at low pressures due to low vibrational entropies of the product phases containing the [B(12)H(12)](2-) anion.


Journal of the American Chemical Society | 2014

High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach

Gangjian Tan; Li-Dong Zhao; Fengyuan Shi; Jeff W. Doak; Shih Han Lo; Hui Sun; C. Wolverton; Vinayak P. Dravid; Ctirad Uher; Mercouri G. Kanatzidis

SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe. First, we show that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density. For example, a 3 mol % self-compensation of Sn results in a 50% improvement in the figure of merit ZT. In addition, we reveal that Cd, nominally isoelectronic with Sn, favorably impacts the electronic band structure by (a) diminishing the energy separation between the light-hole and heavy-hole valence bands in the material, leading to an enhanced Seebeck coefficient, and (b) enlarging the energy band gap. Thus, alloying with Cd atoms enables a form of valence band engineering that improves the high-temperature thermoelectric performance, where p-type samples of SnCd(0.03)Te exhibit ZT values of ~0.96 at 823 K, a 60% improvement over the Cd-free sample. Finally, we introduce endotaxial CdS or ZnS nanoscale precipitates that reduce the lattice thermal conductivity of SnCd(0.03)Te with no effect on the power factor. We report that SnCd(0.03)Te that are endotaxially nanostructured with CdS and ZnS have a maximum ZTs of ~1.3 and ~1.1 at 873 K, respectively. Therefore, SnTe-based materials could be ideal alternatives for p-type lead chalcogenides for high temperature thermoelectric power generation.


Journal of the American Chemical Society | 2013

High thermoelectric performance via hierarchical compositionally alloyed nanostructures.

Li-Dong Zhao; Shiqiang Hao; Shih Han Lo; Chun I. Wu; Xiaoyuan Zhou; Yeseul Lee; Hao Li; Kanishka Biswas; Timothy P. Hogan; Ctirad Uher; C. Wolverton; Vinayak P. Dravid; Mercouri G. Kanatzidis

Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT ~ 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide. Our strategy goes beyond the recent ideas of reducing thermal conductivity by adding two key new theory-guided concepts in engineering, both electronic structure and band alignment across nanostructure-matrix interface. Utilizing density functional theory for calculations of valence band energy levels of nanoscale precipitates of CdS, CdSe, ZnS, and ZnSe, we infer favorable valence band alignments between PbSe and compositionally alloyed nanostructures of CdS1-xSex/ZnS1-xSex. Then by alloying Cd on the cation sublattice of PbSe, we tailor the electronic structure of its two valence bands (light hole L and heavy hole Σ) to move closer in energy, thereby enabling the enhancement of the Seebeck coefficients and the power factor.


Journal of the American Chemical Society | 2012

Raising the Thermoelectric Performance of p-Type PbS with Endotaxial Nanostructuring and Valence-Band Offset Engineering Using CdS and ZnS

Li-Dong Zhao; Jiaqing He; Shiqiang Hao; Chun I. Wu; Timothy P. Hogan; C. Wolverton; Vinayak P. Dravid; Mercouri G. Kanatzidis

We have investigated in detail the effect of CdS and ZnS as second phases on the thermoelectric properties of p-type PbS. We report a ZT of ~1.3 at 923 K for 2.5 at.% Na-doped p-type PbS with endotaxially nanostructured 3.0 at.% CdS. We attribute the high ZT to the combination of broad-based phonon scattering on multiple length scales to reduce (lattice) thermal conductivity and favorable charge transport through coherent interfaces between the PbS matrix and metal sulfide nanophase precipitates, which maintains the requisite high carrier conductivity and the associated power factor. Similar to large ionically bonded metal sulfides (ZnS, CaS, and SrS), the covalently bonded CdS can also effectively reduce the lattice thermal conductivity in p-type PbS. The presence of ubiquitous nanostructuring was confirmed by transmission electron microscopy. Valence and conduction band energy levels of the NaCl-type metal sulfides, MS (M = Pb, Cd, Zn, Ca, and Sr) were calculated from density functional theory to gain insight into the band alignment between PbS and the second phases in these materials. The hole transport is controlled by band offset minimization through the alignment of valence bands between the host PbS and the embedded second phases, MS (M = Cd, Zn, Ca, and Sr). The smallest valence band offset of about 0.13 eV at 0 K was found between PbS and CdS which is diminished further by thermal band broadening at elevated temperature. This allows carrier transport between the endotaxially aligned components (i.e., matrix and nanostructure), thus minimizing significant deterioration of the hole mobility and power factor. We conclude the thermoelectric performance of the PbS system and, by extension, other systems can be enhanced by means of a closely coupled phonon-blocking/electron-transmitting approach through embedding endotaxially nanostructured second phases.


Physical Review B | 1998

Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

V. Ozoliņš; C. Wolverton; Alex Zunger

The classic metallurgical systems---noble-metal alloys---that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at


Journal of the American Chemical Society | 2015

Valence Band Modification and High Thermoelectric Performance in SnTe Heavily Alloyed with MnTe

Gangjian Tan; Fengyuan Shi; Shiqiang Hao; Hang Chi; Trevor P. Bailey; Li-Dong Zhao; Ctirad Uher; C. Wolverton; Vinayak P. Dravid; Mercouri G. Kanatzidis

T=0

Collaboration


Dive into the C. Wolverton's collaboration.

Top Co-Authors

Avatar

Shiqiang Hao

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Zunger

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinay Hegde

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

D. de Fontaine

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Kirklin

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge